Search results
Results From The WOW.Com Content Network
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3]
Although the Python interface is more polished and the primary focus of development, PyTorch also has a C++ interface. [ 14 ] A number of pieces of deep learning software are built on top of PyTorch, including Tesla Autopilot , [ 15 ] Uber 's Pyro, [ 16 ] Hugging Face 's Transformers, [ 17 ] PyTorch Lightning , [ 18 ] [ 19 ] and Catalyst.
In computing, CUDA is a proprietary [2] parallel computing platform and application programming interface (API) that allows software to use certain types of graphics processing units (GPUs) for accelerated general-purpose processing, an approach called general-purpose computing on GPUs.
Torch is an open-source machine learning library, a scientific computing framework, and a scripting language based on Lua. [3] It provides LuaJIT interfaces to deep learning algorithms implemented in C. It was created by the Idiap Research Institute at EPFL. Torch development moved in 2017 to PyTorch, a port of the library to Python. [4] [5] [6]
PyTorch Lightning is an open-source Python library that provides a high-level interface for PyTorch, a popular deep learning framework. [1] It is a lightweight and high-performance framework that organizes PyTorch code to decouple research from engineering, thus making deep learning experiments easier to read and reproduce.
TensorFlow is Google Brain's second-generation system. Version 1.0.0 was released on February 11, 2017. [17] While the reference implementation runs on single devices, TensorFlow can run on multiple CPUs and GPUs (with optional CUDA and SYCL extensions for general-purpose computing on graphics processing units). [18]
CUDA code runs on both the central processing unit (CPU) and graphics processing unit (GPU). NVCC separates these two parts and sends host code (the part of code which will be run on the CPU) to a C compiler like GNU Compiler Collection (GCC) or Intel C++ Compiler (ICC) or Microsoft Visual C++ Compiler, and sends the device code (the part which will run on the GPU) to the GPU.
The setp.cc.type instruction sets a predicate register to the result of comparing two registers of appropriate type, there is also a set instruction, where set.le.u32.u64 %r101, %rd12, %rd28 sets the 32-bit register %r101 to 0xffffffff if the 64-bit register %rd12 is less than or equal to the 64-bit register %rd28. Otherwise %r101 is set to ...