Search results
Results From The WOW.Com Content Network
In semantics and pragmatics, a truth condition is the condition under which a sentence is true. For example, "It is snowing in Nebraska" is true precisely when it is snowing in Nebraska. Truth conditions of a sentence do not necessarily reflect current reality. They are merely the conditions under which the statement would be true. [1]
In realizability truth values are sets of programs, which can be understood as computational evidence of validity of a formula. For example, the truth value of the statement "for every number there is a prime larger than it" is the set of all programs that take as input a number , and output a prime larger than .
The truth conditions for quantified formulas are given purely in terms of truth with no appeal to domains whatsoever (and hence its name truth-value semantics). Game semantics or game-theoretical semantics made a resurgence mainly due to Jaakko Hintikka for logics of (finite) partially ordered quantification , which were originally investigated ...
Truth-conditional semantics is an approach to semantics of natural language that sees meaning (or at least the meaning of assertions) as being the same as, or reducible to, their truth conditions. This approach to semantics is principally associated with Donald Davidson , and attempts to carry out for the semantics of natural language what ...
The material conditional ... conditionals are truth functional in the sense that the truth value of "If P, then Q" is determined solely by the truth values of ...
In logic, a truth function [1] is a function that accepts truth values as input and produces a unique truth value as output. In other words: the input and output of a truth function are all truth values; a truth function will always output exactly one truth value, and inputting the same truth value(s) will always output the same truth value.
These examples, one from mathematics and one from natural language, illustrate the concept of vacuous truths: "For any integer x, if x > 5 then x > 3." [11] – This statement is true non-vacuously (since some integers are indeed greater than 5), but some of its implications are only vacuously true: for example, when x is the integer 2, the statement implies the vacuous truth that "if 2 > 5 ...
In particular, the truth value of can change from one model to another. On the other hand, the claim that two formulas are logically equivalent is a statement in metalanguage, which expresses a relationship between two statements and . The statements are logically equivalent if, in every model, they have the same truth value.