Search results
Results From The WOW.Com Content Network
The properties of gradient descent depend on the properties of the objective function and the variant of gradient descent used (for example, if a line search step is used). The assumptions made affect the convergence rate, and other properties, that can be proven for gradient descent. [ 33 ]
A comparison of the convergence of gradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2).
The convergence of stochastic gradient descent has been analyzed ... A conceptually simple extension of stochastic gradient descent makes the learning rate a ...
For the case of a function with at most countably many critical points (such as a Morse function) and compact sublevels, as well as with Lipschitz continuous gradient where one uses standard GD with learning rate <1/L (see the section "Stochastic gradient descent"), then convergence is guaranteed, see for example Chapter 12 in Lange (2013 ...
One can compare with Backtracking line search method for Gradient descent, ... - a function for which Newton's method has very good global convergence rate. [2]: Sec.6.2
Thus, the gradient descent may slow down in a vicinity of any eigenvector, however, it is guaranteed to either converge to the eigenvector with a linear convergence rate or, if this eigenvector is a saddle point, the iterative Rayleigh quotient is more likely to drop down below the corresponding eigenvalue and start converging linearly to the ...
In the adaptive control literature, the learning rate is commonly referred to as gain. [2] In setting a learning rate, there is a trade-off between the rate of convergence and overshooting. While the descent direction is usually determined from the gradient of the loss function, the learning rate determines how big a step is taken in that ...
In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.