Search results
Results From The WOW.Com Content Network
An implicit function is a function that is defined by an implicit equation, that relates one of the variables, considered as the value of the function, with the others considered as the arguments. [ 1 ] : 204–206 For example, the equation x 2 + y 2 − 1 = 0 {\displaystyle x^{2}+y^{2}-1=0} of the unit circle defines y as an implicit function ...
The implicit function theorem may still be applied to these two points, by writing x as a function of y, that is, = (); now the graph of the function will be ((),), since where b = 0 we have a = 1, and the conditions to locally express the function in this form are satisfied.
In the study of graph algorithms, an implicit graph representation (or more simply implicit graph) is a graph whose vertices or edges are not represented as explicit objects in a computer's memory, but rather are determined algorithmically from some other input, for example a computable function.
In general, implicit curves fail the vertical line test (meaning that some values of x are associated with more than one value of y) and so are not necessarily graphs of functions. However, the implicit function theorem gives conditions under which an implicit curve locally is given by the graph of a function (so in particular it has no self ...
An implicit surface is the set of zeros of a function of three variables. Implicit means that the equation is not solved for x or y or z . The graph of a function is usually described by an equation z = f ( x , y ) {\displaystyle z=f(x,y)} and is called an explicit representation.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
In other words, the implicit surface is the graph of a function near a point of the surface where the partial derivative in z is nonzero. An implicit surface has thus, locally, a parametric representation, except at the points of the surface where the three partial derivatives are zero.
If b 1 ≠ 0 then the implicit function theorem guarantees there is a smooth function h so that the curve has the form y = h(x) near the origin. Similarly, if b 0 ≠ 0 then there is a smooth function k so that the curve has the form x = k(y) near the origin.