When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/MichaelisMenten_kinetics

    The Michaelis constant is defined as the concentration of substrate at which the reaction rate is half of . [6] Biochemical reactions involving a single substrate are often assumed to follow MichaelisMenten kinetics, without regard to the model's underlying assumptions.

  3. Reversible Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Reversible_Michaelis...

    When used to model enzyme rates in vivo , for example, to model a metabolic pathway, this representation is inadequate because under these conditions product is present. As a result, when building computer models of metabolism [ 1 ] or other enzymatic processes, it is better to use the reversible form of the MichaelisMenten equation.

  4. Michaelis–Menten–Monod kinetics - Wikipedia

    en.wikipedia.org/wiki/MichaelisMenten–Monod...

    The enzyme-driven reaction can be conceptualized as the binding of an enzyme E with the substrate S to form an intermediate complex C, which releases the reaction product P and the unchanged enzyme E. During the metabolic consumption of S, biomass B is produced, which synthesizes the enzyme, thus feeding back to the chemical reaction.

  5. Dissociation rate - Wikipedia

    en.wikipedia.org/wiki/Dissociation_rate

    In the Michaelis-Menten model, the enzyme binds to the substrate yielding an enzyme substrate complex, which can either go backwards by dissociating or go forward by forming a product. [2] The dissociation rate constant is defined using K off. [2] The Michaelis-Menten constant is denoted by K m and is represented by the equation K m = (K off ...

  6. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    The MichaelisMenten equation [10] describes how the (initial) reaction rate v 0 depends on the position of the substrate-binding equilibrium and the rate constant k 2. = [] + [] (MichaelisMenten equation) with the constants

  7. Substrate inhibition in bioreactors - Wikipedia

    en.wikipedia.org/wiki/Substrate_inhibition_in...

    A plot depicting the initial reaction rate versus substrate concentration as modeled by the Michaelis-Menten equation (solid line) and the Haldane equation for substrate inhibition (dotted line). One of the most well known equations to describe single-substrate enzyme kinetics is the Michaelis-Menten equation.

  8. Eadie–Hofstee diagram - Wikipedia

    en.wikipedia.org/wiki/Eadie–Hofstee_diagram

    Eadie–Hofstee plot of v against v/a for MichaelisMenten kinetics. In biochemistry, an Eadie–Hofstee plot (or Eadie–Hofstee diagram) is a graphical representation of the MichaelisMenten equation in enzyme kinetics. It has been known by various different names, including Eadie plot, Hofstee plot and Augustinsson plot.

  9. Competitive inhibition - Wikipedia

    en.wikipedia.org/wiki/Competitive_inhibition

    The MichaelisMenten Model can be an invaluable tool to understanding enzyme kinetics. According to this model, a plot of the reaction velocity (V 0) associated with the concentration [S] of the substrate can then be used to determine values such as V max, initial velocity, and K m (V max /2 or affinity of enzyme to substrate complex). [4]

  1. Related searches alcohol to ketone reaction rate formula michaelis menten model labeled water

    michaelis menten formulamichaelis menten biochemistry
    michaelis meanten equation