When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Point estimation - Wikipedia

    en.wikipedia.org/wiki/Point_estimation

    In statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean).

  3. Three-point estimation - Wikipedia

    en.wikipedia.org/wiki/Three-point_estimation

    These values are used to calculate an E value for the estimate and a standard deviation (SD) as L-estimators, where: E = (a + 4m + b) / 6 SD = (b − a) / 6. E is a weighted average which takes into account both the most optimistic and most pessimistic estimates provided. SD measures the variability or uncertainty in the estimate.

  4. Estimator - Wikipedia

    en.wikipedia.org/wiki/Estimator

    In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. [1] For example, the sample mean is a commonly used estimator of the population mean. There are point and interval ...

  5. Estimating equations - Wikipedia

    en.wikipedia.org/wiki/Estimating_equations

    In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated.This can be thought of as a generalisation of many classical methods—the method of moments, least squares, and maximum likelihood—as well as some recent methods like M-estimators.

  6. Mean of a function - Wikipedia

    en.wikipedia.org/wiki/Mean_of_a_function

    The point () is called the mean value of () on [,]. So we write f ¯ = f ( c ) {\displaystyle {\bar {f}}=f(c)} and rearrange the preceding equation to get the above definition. In several variables, the mean over a relatively compact domain U in a Euclidean space is defined by

  7. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    Since the data in this context is defined to be (x, y) pairs for every observation, the mean response at a given value of x, say x d, is an estimate of the mean of the y values in the population at the x value of x d, that is ^ ^. The variance of the mean response is given by: [11]

  8. Prediction interval - Wikipedia

    en.wikipedia.org/wiki/Prediction_interval

    For example, to calculate the 95% prediction interval for a normal distribution with a mean (μ) of 5 and a standard deviation (σ) of 1, then z is approximately 2. Therefore, the lower limit of the prediction interval is approximately 5 ‒ (2⋅1) = 3, and the upper limit is approximately 5 + (2⋅1) = 7, thus giving a prediction interval of ...

  9. Empirical Bayes method - Wikipedia

    en.wikipedia.org/wiki/Empirical_Bayes_method

    The resulting point estimate ⁡ is therefore like a weighted average of the sample mean ¯ and the prior mean =. This turns out to be a general feature of empirical Bayes; the point estimates for the prior (i.e. mean) will look like a weighted averages of the sample estimate and the prior estimate (likewise for estimates of the variance).