When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Diffraction - Wikipedia

    en.wikipedia.org/wiki/Diffraction

    Sound waves can diffract around objects, which is why one can still hear someone calling even when hiding behind a tree. [25] Diffraction can also be a concern in some technical applications; it sets a fundamental limit to the resolution of a camera, telescope, or microscope. Other examples of diffraction are considered below.

  3. Acoustic wave - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave

    An acoustic wave is a mechanical wave that transmits energy through the movements of atoms and molecules. Acoustic waves transmit through fluids in a longitudinal manner (movement of particles are parallel to the direction of propagation of the wave); in contrast to electromagnetic waves that transmit in transverse manner (movement of particles at a right angle to the direction of propagation ...

  4. Atmospheric diffraction - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_diffraction

    Optical atmospheric diffraction; Radio wave diffraction is the scattering of radio frequency or lower frequencies from the Earth's ionosphere, resulting in the ability to achieve greater distance radio broadcasting. Sound wave diffraction is the bending of sound waves, as the sound travels around edges of geometric objects. This produces the ...

  5. Ultrasonic grating - Wikipedia

    en.wikipedia.org/wiki/Ultrasonic_grating

    An ultrasonic grating is a type of diffraction grating [1] produced by the interference of ultrasonic waves in a medium, which alters the physical properties of the medium (and hence the refractive index) in a grid-like pattern.

  6. Wave - Wikipedia

    en.wikipedia.org/wiki/Wave

    Other examples of mechanical waves are seismic waves, gravity waves, surface waves and string vibrations. In an electromagnetic wave (such as light), coupling between the electric and magnetic fields sustains propagation of waves involving these fields according to Maxwell's equations .

  7. Acoustical engineering - Wikipedia

    en.wikipedia.org/wiki/Acoustical_engineering

    Diffraction is the bending of sound waves around surfaces in the path of the wave. Refraction is the bending of sound waves caused by changes in the medium through which the wave is passing. For example, temperature gradients can cause sound wave refraction. [27] Acoustical engineers apply these fundamental concepts, along with mathematical ...

  8. Acoustics - Wikipedia

    en.wikipedia.org/wiki/Acoustics

    In solids, mechanical waves can take many forms including longitudinal waves, transverse waves and surface waves. Acoustics looks first at the pressure levels and frequencies in the sound wave and how the wave interacts with the environment. This interaction can be described as either a diffraction, interference or a reflection or

  9. Room acoustics - Wikipedia

    en.wikipedia.org/wiki/Room_acoustics

    It changes the disturbing echo of the sound into a mild reverb which decays over time. Diffraction is the change of a sound wave's propagation to avoid obstacles. According to Huygens’ principle, when a sound wave is partially blocked by an obstacle, the remaining part that gets through acts as a source of secondary waves. [17]