When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The row space of this matrix is the vector space spanned by the row vectors. The column vectors of a matrix. The column space of this matrix is the vector space spanned by the column vectors. In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column ...

  3. Linear span - Wikipedia

    en.wikipedia.org/wiki/Linear_span

    In mathematics, the linear span (also called the linear hull [1] or just span) of a set of elements of a vector space is the smallest linear subspace of that contains . It is the set of all finite linear combinations of the elements of S , [ 2 ] and the intersection of all linear subspaces that contain S . {\displaystyle S.}

  4. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    The matrix equation is equivalent to a homogeneous system of linear equations: ... The row space, or coimage, of a matrix A is the span of the row vectors of A.

  5. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    As a consequence, a rank-k matrix can be written as the sum of k rank-1 matrices, but not fewer. The rank of a matrix plus the nullity of the matrix equals the number of columns of the matrix. (This is the rank–nullity theorem.) If A is a matrix over the real numbers then the rank of A and the rank of its corresponding Gram matrix are equal.

  6. Linear subspace - Wikipedia

    en.wikipedia.org/wiki/Linear_subspace

    The reduced matrix has the same null space as the original. Row reduction does not change the span of the row vectors, i.e. the reduced matrix has the same row space as the original. Row reduction does not affect the linear dependence of the column vectors.

  7. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    Matrix multiplication is defined in such a way that the product of two matrices is the matrix of the composition of the corresponding linear maps, and the product of a matrix and a column matrix is the column matrix representing the result of applying the represented linear map to the represented vector. It follows that the theory of finite ...

  8. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Matrix theory is the branch of mathematics that focuses on the study of matrices. It was initially a sub-branch of linear algebra, but soon grew to include subjects ...

  9. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    In linear algebra, a column vector with ⁠ ⁠ elements is an matrix [1] consisting of a single column of ⁠ ⁠ entries, for example, = [].. Similarly, a row vector is a matrix for some ⁠ ⁠, consisting of a single row of ⁠ ⁠ entries, = […]. (Throughout this article, boldface is used for both row and column vectors.)