Search results
Results From The WOW.Com Content Network
In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms.
e. In mathematics, specifically group theory, Cauchy's theorem states that if G is a finite group and p is a prime number dividing the order of G (the number of elements in G), then G contains an element of order p. That is, there is x in G such that p is the smallest positive integer with xp = e, where e is the identity element of G.
In group theory, a word is any written product of group elements and their inverses. For example, if x, y and z are elements of a group G, then xy, z−1xzz and y−1zxx−1yz−1 are words in the set {x, y, z}. Two different words may evaluate to the same value in G, [1] or even in every group. [2] Words play an important role in the theory of ...
Computational group theory. In mathematics, computational group theory is the study of groups by means of computers. It is concerned with designing and analysing algorithms and data structures to compute information about groups. The subject has attracted interest because for many interesting groups (including most of the sporadic groups) it is ...
In group theory, the quaternion group Q 8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset of the quaternions under multiplication. It is given by the group presentation. where e is the identity element and e commutes with the other elements of the group.
The ATLAS of Finite Groups, often simply known as the ATLAS, is a group theory book by John Horton Conway, Robert Turner Curtis, Simon Phillips Norton, Richard Alan Parker and Robert Arnott Wilson (with computational assistance from J. G. Thackray), published in December 1985 by Oxford University Press and reprinted with corrections in 2003 (ISBN 978-0-19-853199-9).
In group theory, Cayley's theorem, named in honour of Arthur Cayley, states that every group G is isomorphic to a subgroup of a symmetric group. [1] More specifically, G is isomorphic to a subgroup of the symmetric group whose elements are the permutations of the underlying set of G. Explicitly, The homomorphism can also be understood as ...
Group isomorphism. In abstract algebra, a group isomorphism is a function between two groups that sets up a bijection between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the groups are called isomorphic. From the standpoint of group theory, isomorphic ...