When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    It was not until 1715 that a general method for constructing these series for all functions for which they exist was finally published by Brook Taylor, [8] after whom the series are now named. The Maclaurin series was named after Colin Maclaurin, a Scottish mathematician, who published a special case of the Taylor result in the mid-18th century.

  3. Cumulant - Wikipedia

    en.wikipedia.org/wiki/Cumulant

    This expansion is a Maclaurin series, so the n th cumulant can be obtained by differentiating the above expansion n times and evaluating the result at zero: [1] = (). If the moment-generating function does not exist, the cumulants can be defined in terms of the relationship between cumulants and moments discussed later.

  4. Colin Maclaurin - Wikipedia

    en.wikipedia.org/wiki/Colin_Maclaurin

    Nevertheless, Maclaurin received credit for his use of the series, and the Taylor series expanded around 0 is sometimes known as the Maclaurin series. [7] Colin Maclaurin (1698–1746) Maclaurin also made significant contributions to the gravitation attraction of ellipsoids, a subject that furthermore attracted the attention of d'Alembert, A.-C ...

  5. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  6. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The most direct method is to truncate the Maclaurin series for each of the trigonometric functions. Depending on the order of the approximation , cos ⁡ θ {\displaystyle \textstyle \cos \theta } is approximated as either 1 {\displaystyle 1} or as 1 − 1 2 θ 2 {\textstyle 1-{\frac {1}{2}}\theta ^{2}} .

  7. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function. In many situations, the center c is equal to zero, for instance for Maclaurin series.

  8. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    The left-hand side is the Maclaurin series expansion of the right-hand side. Alternatively, the equality can be justified by multiplying the power series on the left by 1 − x, and checking that the result is the constant power series 1 (in other words, that all coefficients except the one of x 0 are equal to 0). Moreover, there can be no ...

  9. Binomial series - Wikipedia

    en.wikipedia.org/wiki/Binomial_series

    where the power series on the right-hand side of is expressed in terms of the (generalized) binomial coefficients ():= () (+)!.Note that if α is a nonnegative integer n then the x n + 1 term and all later terms in the series are 0, since each contains a factor of (n − n).