Search results
Results From The WOW.Com Content Network
In a new bottle of soda, the concentration of carbon dioxide in the liquid phase has a particular value. If half of the liquid is poured out and the bottle is sealed, carbon dioxide will leave the liquid phase at an ever-decreasing rate, and the partial pressure of carbon dioxide in the gas phase will increase until equilibrium is reached.
D'Alembert's principle generalizes the principle of virtual work from static to dynamical systems by introducing forces of inertia which, when added to the applied forces in a system, result in dynamic equilibrium. [1] [2] D'Alembert's principle can be applied in cases of kinematic constraints that depend on velocities.
Guldberg and Waage also recognized that chemical equilibrium is a dynamic process in which rates of reaction for the forward and backward reactions must be equal at chemical equilibrium. In order to derive the expression of the equilibrium constant appealing to kinetics, the expression of the rate equation must be used.
If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to partially reverse the change. For example, adding more S (to the chemical reaction above) from the outside will cause an excess of products, and the system will try to counteract this by increasing the reverse reaction and pushing the ...
If a system is not in static equilibrium, D'Alembert showed that by introducing the acceleration terms of Newton's laws as inertia forces, this approach is generalized to define dynamic equilibrium. The result is D'Alembert's form of the principle of virtual work, which is used to derive the equations of motion for a mechanical system of rigid ...
The theory is based on the concept of dynamic equilibrium in which streamforms balance between physical parameters, such as width, depth, velocity, and sediment load, also taking into account biological factors. [2] It offers an introduction to map out biological communities and also an explanation for their sequence in individual sections of ...
John Tilton Hack (1913–1991) was an American geologist and geomorphologist known for his contributions to establish the dynamic equilibrium concept in landscapes. Hack's law, concerning the empirical relationship between the length of streams and the area of their basins, is named after him. Hack was a student of Kirk Bryan.
This page was last edited on 2 September 2023, at 20:42 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.