When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hellinger distance - Wikipedia

    en.wikipedia.org/wiki/Hellinger_distance

    In probability and statistics, the Hellinger distance (closely related to, although different from, the Bhattacharyya distance) is used to quantify the similarity between two probability distributions. It is a type of f-divergence. The Hellinger distance is defined in terms of the Hellinger integral, which was introduced by Ernst Hellinger in 1909.

  3. f-divergence - Wikipedia

    en.wikipedia.org/wiki/F-divergence

    Notably, except for total variation distance, all others are special cases of -divergence, or linear sums of -divergences. For each f-divergence D f {\displaystyle D_{f}} , its generating function is not uniquely defined, but only up to c ⋅ ( t − 1 ) {\displaystyle c\cdot (t-1)} , where c {\displaystyle c} is any real constant.

  4. Statistical distance - Wikipedia

    en.wikipedia.org/wiki/Statistical_distance

    Many terms are used to refer to various notions of distance; these are often confusingly similar, and may be used inconsistently between authors and over time, either loosely or with precise technical meaning. In addition to "distance", similar terms include deviance, deviation, discrepancy, discrimination, and divergence, as well as others ...

  5. Kullback–Leibler divergence - Wikipedia

    en.wikipedia.org/wiki/Kullback–Leibler_divergence

    The term "divergence" is in contrast to a distance (metric), since the symmetrized divergence does not satisfy the triangle inequality. [10] Numerous references to earlier uses of the symmetrized divergence and to other statistical distances are given in Kullback (1959 , pp. 6–7, §1.3 Divergence).

  6. Total variation distance of probability measures - Wikipedia

    en.wikipedia.org/wiki/Total_variation_distance...

    The total variation distance (or half the norm) arises as the optimal transportation cost, when the cost function is (,) =, that is, ‖ ‖ = (,) = {(): =, =} = ⁡ [], where the expectation is taken with respect to the probability measure on the space where (,) lives, and the infimum is taken over all such with marginals and , respectively.

  7. Divergence (statistics) - Wikipedia

    en.wikipedia.org/wiki/Divergence_(statistics)

    The only divergence for probabilities over a finite alphabet that is both an f-divergence and a Bregman divergence is the Kullback–Leibler divergence. [8] The squared Euclidean divergence is a Bregman divergence (corresponding to the function ⁠ x 2 {\displaystyle x^{2}} ⁠ ) but not an f -divergence.

  8. Bhattacharyya distance - Wikipedia

    en.wikipedia.org/wiki/Bhattacharyya_distance

    In statistics, the Bhattacharyya distance is a quantity which represents a notion of similarity between two probability distributions. [1] It is closely related to the Bhattacharyya coefficient , which is a measure of the amount of overlap between two statistical samples or populations.

  9. Information projection - Wikipedia

    en.wikipedia.org/wiki/Information_projection

    Viewing the Kullback–Leibler divergence as a measure of distance, the I-projection is the "closest" distribution to q of all the distributions in P. The I-projection is useful in setting up information geometry , notably because of the following inequality, valid when P is convex: [ 1 ]