Search results
Results From The WOW.Com Content Network
Some amount of aliasing always occurs when such continuous functions over time are sampled. Functions whose frequency content is bounded ( bandlimited ) have an infinite duration in the time domain. If sampled at a high enough rate, determined by the bandwidth , the original function can, in theory, be perfectly reconstructed from the infinite ...
The modified discrete cosine transform (MDCT) is a transform based on the type-IV discrete cosine transform (DCT-IV), with the additional property of being lapped: it is designed to be performed on consecutive blocks of a larger dataset, where subsequent blocks are overlapped so that the last half of one block coincides with the first half of the next block.
Recall that decimation of sampled data in one domain (time or frequency) produces overlap (sometimes known as aliasing) in the other, and vice versa. Compared to an L {\displaystyle L} -length DFT, the s N {\displaystyle s_{_{N}}} summation/overlap causes decimation in frequency, [ 1 ] : p.558 leaving only DTFT samples least affected by ...
The aliasing appears as a moiré pattern. The "solution" to higher sampling in the spatial domain for this case would be to move closer to the shirt, use a higher resolution sensor, or to optically blur the image before acquiring it with the sensor using an optical low-pass filter. Another example is shown here in the brick patterns.
Instead of using zero padding to prevent time-domain aliasing like its overlap-add counterpart, overlap-save simply discards all points of aliasing, and saves the previous data in one block to be copied into the convolution for the next block. In one dimension, the performance and storage metric differences between the two methods is minimal.
The bandwidth, B, in this example is just small enough that the slower sampling does not cause overlap (aliasing). Sometimes, a sampled function is resampled at a lower rate by keeping only every M th sample and discarding the others, commonly called "decimation". Potential aliasing is prevented by lowpass-filtering the samples before decimation.
The conversion from continuous time to samples (discrete-time) changes the underlying Fourier transform of x(t) into a discrete-time Fourier transform (DTFT), which generally entails a type of distortion called aliasing. Choice of an appropriate sample-rate (see Nyquist rate) is the key to minimizing that distortion.
Or, for the MDCT (based on the type-IV DCT), the boundary conditions are intimately involved in the MDCT's critical property of time-domain aliasing cancellation. In a more subtle fashion, the boundary conditions are responsible for the energy compactification properties that make DCTs useful for image and audio compression, because the ...