Search results
Results From The WOW.Com Content Network
Mie scattering (sometimes referred to as a non-molecular scattering or aerosol particle scattering) takes place in the lower 4,500 m (15,000 ft) of the atmosphere, where many essentially spherical particles with diameters approximately equal to the wavelength of the incident ray may be present. Mie scattering theory has no upper size limitation ...
The Sub-Department of Atmospheric Oceanic and Planetary Physics in the University of Oxford maintains an archive of Mie scattering routines for both single spheres and populations of particles in which sizes follow a log-normal distribution. The code is also available for calculating the analytical derivatives of Mie scattering (i.e. the ...
Codes for electromagnetic scattering by cylinders – this article list codes for electromagnetic scattering by a cylinder. Majority of existing codes for calculation of electromagnetic scattering by a single cylinder are based on Mie theory , which is an analytical solution of Maxwell's equations in terms of infinite series.
The particle size measurement is typically achieved by means of devices, called Particle Size Analyzers (PSA), which are based on different technologies, such as high definition image processing, analysis of Brownian motion, gravitational settling of the particle and light scattering (Rayleigh and Mie scattering) of the particles.
Scattering from any spherical particles with arbitrary size parameter is explained by the Mie theory. Mie theory, also called Lorenz-Mie theory or Lorenz-Mie-Debye theory, is a complete analytical solution of Maxwell's equations for the scattering of electromagnetic radiation by spherical particles (Bohren and Huffman, 1998).
The Mie scattering model, or Mie theory, is used as alternative to the Fraunhofer theory since the 1990s. Commercial laser diffraction analyzers leave to the user the choice of using either Fraunhofer or Mie theory for data analysis, hence the importance of understanding the strengths and limitations of both models.
The incident and scattered electric field are expanded into spherical vector wave functions (SVWF), which are also encountered in Mie scattering.They are the fundamental solutions of the vector Helmholtz equation and can be generated from the scalar fundamental solutions in spherical coordinates, the spherical Bessel functions of the first kind and the spherical Hankel functions.
Most of these organelles fall in the Mie scattering regime, and exhibit highly anisotropic forward-directed scattering. [ 12 ] Light scattering in biological tissue is denoted by the scattering coefficient ( μ s {\displaystyle \mu _{s}} ), which is defined as the probability of photon scattering in tissue per unit path length. [ 13 ]