Search results
Results From The WOW.Com Content Network
847 12359 Ensembl ENSG00000121691 ENSMUSG00000027187 UniProt P04040 P24270 RefSeq (mRNA) NM_001752 NM_009804 RefSeq (protein) NP_001743 NP_033934 Location (UCSC) Chr 11: 34.44 – 34.47 Mb Chr 2: 103.28 – 103.32 Mb PubMed search Wikidata View/Edit Human View/Edit Mouse Catalase is a common enzyme found in nearly all living organisms exposed to oxygen (such as bacteria, plants, and animals ...
The catalase test tests whether a microbe produces the enzyme catalase, which catalyzes the breakdown of hydrogen peroxide. Smearing a colony sample onto a glass slide and adding a solution of hydrogen peroxide (3% H 2 O 2) will indicate whether the enzyme is present or not. Bubbling is a positive test while nothing happening is a negative result.
In the laboratory the source of the hydrogen peroxide (H 2 O 2) usually is the reaction of glucose with oxygen in the presence of the enzyme glucose oxidase (EC 1.1.3.4) that also takes place in saliva. Glucose, in turn, can be formed from starch in the presence of the saliva enzyme amyloglucosidase (EC 3.2.1.3).
The % purity is 100% × (specific activity of enzyme sample / specific activity of pure enzyme). The impure sample has lower specific activity because some of the mass is not actually enzyme. If the specific activity of 100% pure enzyme is known, then an impure sample will have a lower specific activity, allowing purity to be calculated and ...
Catalase-peroxidase (EC 1.11.1.21, katG ... This enzyme is a strong catalase with H 2 O 2 as donor which releases O 2. References External links ...
In enzymology, the turnover number (k cat) is defined as the limiting number of chemical conversions of substrate molecules per second that a single active site will execute for a given enzyme concentration [E T] for enzymes with two or more active sites. [1] For enzymes with a single active site, k cat is referred to as the catalytic constant. [2]
Acatalasia is an autosomal recessive peroxisomal disorder caused by absent or very low levels of the enzyme catalase. [2] Catalase breaks down hydrogen peroxide in cells into water and oxygen. Low levels of catalase can cause hydrogen peroxide to build up, causing damage to cells.
An important example is EC 7.1.1.9 cytochrome c oxidase, the key enzyme that allows the body to employ oxygen in the generation of energy and the final component of the electron transfer chain. Other examples are: EC 1.1.3.4 Glucose oxidase; EC 1.4.3.4 Monoamine oxidase; EC 1.14.-.- Cytochrome P450 oxidase; EC 1.6.3.1 NADPH oxidase