When.com Web Search

  1. Ads

    related to: vertical angles how to solve a function problems practice

Search results

  1. Results From The WOW.Com Content Network
  2. Regiomontanus' angle maximization problem - Wikipedia

    en.wikipedia.org/wiki/Regiomontanus'_angle...

    In mathematics, the Regiomontanus's angle maximization problem, is a famous optimization problem [1] posed by the 15th-century German mathematician Johannes Müller [2] (also known as Regiomontanus). The problem is as follows: The two dots at eye level are possible locations of the viewer's eye. A painting hangs from a wall.

  3. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    The minimum of f is 0 at z if and only if z solves the linear complementarity problem. If M is positive definite, any algorithm for solving (strictly) convex QPs can solve the LCP. Specially designed basis-exchange pivoting algorithms, such as Lemke's algorithm and a variant of the simplex algorithm of Dantzig have been used for decades ...

  4. Langley's Adventitious Angles - Wikipedia

    en.wikipedia.org/wiki/Langley's_Adventitious_Angles

    adventitious quadrangles problem. A quadrilateral such as BCEF is called an adventitious quadrangle when the angles between its diagonals and sides are all rational angles, angles that give rational numbers when measured in degrees or other units for which the whole circle is a rational number. Numerous adventitious quadrangles beyond the one ...

  5. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Angle trisection is the construction, using only a straightedge and a compass, of an angle that is one-third of a given arbitrary angle. This is impossible in the general case. For example, the angle 2 π /5 radians (72° = 360°/5) can be trisected, but the angle of π /3 radians (60 ° ) cannot be trisected. [ 8 ]

  6. Problem of Apollonius - Wikipedia

    en.wikipedia.org/wiki/Problem_of_Apollonius

    Although successful in solving Apollonius' problem, van Roomen's method has a drawback. A prized property in classical Euclidean geometry is the ability to solve problems using only a compass and a straightedge. [18] Many constructions are impossible using only these tools, such as dividing an angle in three equal parts.

  7. Buffon's needle problem - Wikipedia

    en.wikipedia.org/wiki/Buffon's_needle_problem

    Placing a needle's center at x, the needle will cross the vertical axis if it falls within a range of 2θ radians, out of π radians of possible orientations. This represents the gray area to the left of x in the figure. For a fixed x, we can express θ as a function of x: θ(x) = arccos(x). Now we can let x range from 0 to 1, and integrate: