When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Boltzmann distribution - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_distribution

    Boltzmann's distribution is an exponential distribution. Boltzmann factor ⁠ ⁠ (vertical axis) as a function of temperature T for several energy differences ε i − ε j.. In statistical mechanics and mathematics, a Boltzmann distribution (also called Gibbs distribution [1]) is a probability distribution or probability measure that gives the probability that a system will be in a certain ...

  3. Boltzmann constant - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_constant

    The Boltzmann constant (k B or k) is the proportionality factor that relates the average relative thermal energy of particles in a gas with the thermodynamic temperature of the gas. [2] It occurs in the definitions of the kelvin (K) and the gas constant , in Planck's law of black-body radiation and Boltzmann's entropy formula , and is used in ...

  4. kT (energy) - Wikipedia

    en.wikipedia.org/wiki/KT_(energy)

    kT (also written as k B T) is the product of the Boltzmann constant, k (or k B), and the temperature, T.This product is used in physics as a scale factor for energy values in molecular-scale systems (sometimes it is used as a unit of energy), as the rates and frequencies of many processes and phenomena depend not on their energy alone, but on the ratio of that energy and kT, that is, on ⁠ E ...

  5. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The Stefan–Boltzmann law, also known as Stefan's law, describes the intensity of the thermal radiation emitted by matter in terms of that matter's temperature. It is named for Josef Stefan , who empirically derived the relationship, and Ludwig Boltzmann who derived the law theoretically.

  6. Partition function (statistical mechanics) - Wikipedia

    en.wikipedia.org/wiki/Partition_function...

    This dependence on microscopic variables is the central point of statistical mechanics. With a model of the microscopic constituents of a system, one can calculate the microstate energies, and thus the partition function, which will then allow us to calculate all the other thermodynamic properties of the system.

  7. Boltzmann equation - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_equation

    The Boltzmann equation can be used to determine how physical quantities change, such as heat energy and momentum, when a fluid is in transport. One may also derive other properties characteristic to fluids such as viscosity , thermal conductivity , and electrical conductivity (by treating the charge carriers in a material as a gas). [ 2 ]

  8. Time–temperature superposition - Wikipedia

    en.wikipedia.org/wiki/Time–temperature...

    The time–temperature shift factor can also be described in terms of the activation energy (E a). By plotting the shift factor a T versus the reciprocal of temperature (in K), the slope of the curve can be interpreted as E a /k, where k is the Boltzmann constant = 8.64x10 −5 eV/K and the activation energy is expressed in terms of eV.

  9. Maxwell–Boltzmann statistics - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Boltzmann_statistics

    Maxwell–Boltzmann statistics is used to derive the Maxwell–Boltzmann distribution of an ideal gas. However, it can also be used to extend that distribution to particles with a different energy–momentum relation , such as relativistic particles (resulting in Maxwell–Jüttner distribution ), and to other than three-dimensional spaces.