Search results
Results From The WOW.Com Content Network
The four Hermite basis functions. The interpolant in each subinterval is a linear combination of these four functions. On the unit interval [,], given a starting point at = and an ending point at = with starting tangent at = and ending tangent at =, the polynomial can be defined by = (+) + (+) + (+) + (), where t ∈ [0, 1].
Example showing non-monotone cubic interpolation (in red) and monotone cubic interpolation (in blue) of a monotone data set. Monotone interpolation can be accomplished using cubic Hermite spline with the tangents m i {\displaystyle m_{i}} modified to ensure the monotonicity of the resulting Hermite spline.
The Hermite interpolation problem is a problem of linear algebra that has the coefficients of the interpolation polynomial as unknown variables and a confluent Vandermonde matrix as its matrix. [3] The general methods of linear algebra, and specific methods for confluent Vandermonde matrices are often used for computing the interpolation ...
Often a special name was chosen for a type of spline satisfying two or more of the main items above. For example, the Hermite spline is a spline that is expressed using Hermite polynomials to represent each of the individual polynomial pieces. These are most often used with n = 3; that is, as Cubic Hermite splines.
Spline interpolation — interpolation by piecewise polynomials Spline (mathematics) — the piecewise polynomials used as interpolants; Perfect spline — polynomial spline of degree m whose mth derivate is ±1; Cubic Hermite spline. Centripetal Catmull–Rom spline — special case of cubic Hermite splines without self-intersections or cusps
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Calculating the interpolating polynomial is computationally expensive (see computational complexity) compared to linear interpolation. Furthermore, polynomial interpolation may exhibit oscillatory artifacts, especially at the end points (see Runge's phenomenon). Polynomial interpolation can estimate local maxima and minima that are outside the ...