Search results
Results From The WOW.Com Content Network
The four Hermite basis functions. The interpolant in each subinterval is a linear combination of these four functions. On the unit interval [,], given a starting point at = and an ending point at = with starting tangent at = and ending tangent at =, the polynomial can be defined by = (+) + (+) + (+) + (), where t ∈ [0, 1].
Example showing non-monotone cubic interpolation (in red) and monotone cubic interpolation (in blue) of a monotone data set. Monotone interpolation can be accomplished using cubic Hermite spline with the tangents m i {\displaystyle m_{i}} modified to ensure the monotonicity of the resulting Hermite spline.
The Hermite interpolation problem is a problem of linear algebra that has the coefficients of the interpolation polynomial as unknown variables and a confluent Vandermonde matrix as its matrix. [3] The general methods of linear algebra, and specific methods for confluent Vandermonde matrices are often used for computing the interpolation ...
In mathematics, a spline is a function defined piecewise by polynomials. In interpolating problems, spline interpolation is often preferred to polynomial interpolation because it yields similar results, even when using low degree polynomials, while avoiding Runge's phenomenon for higher degrees.
Bicubic interpolation can be accomplished using either Lagrange polynomials, cubic splines, or cubic convolution algorithm. In image processing , bicubic interpolation is often chosen over bilinear or nearest-neighbor interpolation in image resampling , when speed is not an issue.
Spline interpolation — interpolation by piecewise polynomials Spline (mathematics) — the piecewise polynomials used as interpolants; Perfect spline — polynomial spline of degree m whose mth derivate is ±1; Cubic Hermite spline. Centripetal Catmull–Rom spline — special case of cubic Hermite splines without self-intersections or cusps
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
In mathematics, a Kochanek–Bartels spline or Kochanek–Bartels curve is a cubic Hermite spline with tension, bias, and continuity parameters defined to change the behavior of the tangents. Given n + 1 knots ,