Search results
Results From The WOW.Com Content Network
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.
Taylor series are used to define functions and "operators" in diverse areas of mathematics. In particular, this is true in areas where the classical definitions of functions break down. For example, using Taylor series, one may extend analytic functions to sets of matrices and operators, such as the matrix exponential or matrix logarithm.
The Taylor series of f converges uniformly to the zero function T f (x) = 0, which is analytic with all coefficients equal to zero. The function f is unequal to this Taylor series, and hence non-analytic. For any order k ∈ N and radius r > 0 there exists M k,r > 0 satisfying the remainder bound above.
Demonstration of this result is fairly straightforward under the assumption that () is differentiable near the neighborhood of and ′ is continuous at with ′ ().To begin, we use the mean value theorem (i.e.: the first order approximation of a Taylor series using Taylor's theorem):
Thus to -approximate () = using a polynomial with lowest degree 3, we do so for () with < / by truncating its Taylor expansion. Now iterate this construction by plugging in the lowest-degree-3 approximation into the Taylor expansion of g ( x ) {\displaystyle g(x)} , obtaining an approximation of lowest degree 9, 27, 81...
In 1706, John Machin used Gregory's series (the Taylor series for arctangent) and the identity = to calculate 100 digits of π (see § Machin-like formula below). [ 30 ] [ 31 ] In 1719, Thomas de Lagny used a similar identity to calculate 127 digits (of which 112 were correct).
Linearization makes it possible to use tools for studying linear systems to analyze the behavior of a nonlinear function near a given point. The linearization of a function is the first order term of its Taylor expansion around the point of interest. For a system defined by the equation
The approximation ( +) and its equivalent form + ( + ( +)) can be obtained by rearranging Stirling's extended formula and observing a coincidence between the resultant power series and the Taylor series expansion of the hyperbolic sine function.