When.com Web Search

  1. Ad

    related to: area and perimeter word problems

Search results

  1. Results From The WOW.Com Content Network
  2. Isoperimetric inequality - Wikipedia

    en.wikipedia.org/wiki/Isoperimetric_inequality

    An elongated shape can be made more round while keeping its perimeter fixed and increasing its area. The classical isoperimetric problem dates back to antiquity. [2] The problem can be stated as follows: Among all closed curves in the plane of fixed perimeter, which curve (if any) maximizes the area of its enclosed region? This question can be ...

  3. Perimeter - Wikipedia

    en.wikipedia.org/wiki/Perimeter

    The isoperimetric problem is to determine a figure with the largest area, amongst those having a given perimeter. The solution is intuitive; it is the circle. In particular, this can be used to explain why drops of fat on a broth surface are circular. This problem may seem simple, but its mathematical proof requires some sophisticated theorems.

  4. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    For shapes with curved boundary, calculus is usually required to compute the area. Indeed, the problem of determining the area of plane figures was a major motivation for the historical development of calculus. [5] For a solid shape such as a sphere, cone, or cylinder, the area of its boundary surface is called the surface area.

  5. Napkin folding problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_folding_problem

    The napkin folding problem is a problem in geometry and the mathematics of paper folding that explores whether folding a square or a rectangular napkin can increase its perimeter. The problem is known under several names, including the Margulis napkin problem , suggesting it is due to Grigory Margulis , and the Arnold's rouble problem referring ...

  6. Compactness measure - Wikipedia

    en.wikipedia.org/wiki/Compactness_measure

    Alternatively, the shape's area could be compared to that of its bounding circle, [1] [2] its convex hull, [1] [3] or its minimum bounding box. [3] Similarly, a comparison can be made between the perimeter of the shape and that of its convex hull, [3] its bounding circle, [1] or a circle having the same area. [1]

  7. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  8. Pizza theorem - Wikipedia

    en.wikipedia.org/wiki/Pizza_theorem

    Let p be an interior point of the disk, and let n be a multiple of 4 that is greater than or equal to 8. Form n sectors of the disk with equal angles by choosing an arbitrary line through p, rotating the line ⁠ n / 2 ⁠ − 1 times by an angle of ⁠ 2 π / n ⁠ radians, and slicing the disk on each of the resulting ⁠ n / 2 ⁠ lines.

  9. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = ⁠ 1 / 2 ⁠ × 2πr × r, holds for a circle.