When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Salt (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Salt_(chemistry)

    In some reactions between highly reactive metals (usually from Group 1 or Group 2) and highly electronegative halogen gases, or water, the atoms can be ionized by electron transfer, [16] a process thermodynamically understood using the Born–Haber cycle. [17] Salts are formed by salt-forming reactions. A base and an acid, e.g., NH 3 + HCl → ...

  3. Ionic bonding - Wikipedia

    en.wikipedia.org/wiki/Ionic_bonding

    Strongly electronegative atoms (such as halogens) often have only one or two empty electron states in their valence shell, and frequently bond with other atoms or gain electrons to form anions. Weakly electronegative atoms (such as alkali metals ) have relatively few valence electrons , which can easily be lost to strongly electronegative atoms.

  4. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    The values below are standard apparent reduction potentials (E°') for electro-biochemical half-reactions measured at 25 °C, 1 atmosphere and a pH of 7 in aqueous solution. [ 1 ] [ 2 ] The actual physiological potential depends on the ratio of the reduced ( Red ) and oxidized ( Ox ) forms according to the Nernst equation and the thermal voltage .

  5. Reduction potential - Wikipedia

    en.wikipedia.org/wiki/Reduction_potential

    In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...

  6. Electron transfer - Wikipedia

    en.wikipedia.org/wiki/Electron_transfer

    Example of a reduction–oxidation reaction between sodium and chlorine, with the OIL RIG mnemonic [1] Electron transfer (ET) occurs when an electron relocates from an atom, ion, or molecule, to another such chemical entity. ET describes the mechanism by which electrons are transferred in redox reactions. [2] Electrochemical processes are ET

  7. Electronegativity - Wikipedia

    en.wikipedia.org/wiki/Electronegativity

    Electronegativity, symbolized as χ, is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. [1] An atom's electronegativity is affected by both its atomic number and the distance at which its valence electrons reside from the charged nucleus. The higher the ...

  8. Electrolyte - Wikipedia

    en.wikipedia.org/wiki/Electrolyte

    Electrolytic cell producing chlorine (Cl 2) and sodium hydroxide (NaOH) from a solution of common salt. For example, in a solution of ordinary table salt (sodium chloride, NaCl) in water, the cathode reaction will be 2 H 2 O + 2e − → 2 OH − + H 2. and hydrogen gas will bubble up; the anode reaction is 2 NaCl → 2 Na + + Cl 2 + 2e −

  9. Heterolysis (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Heterolysis_(chemistry)

    For example, a change of reaction medium from hexane to water increases the rate of tert-Butyl chloride (t-BuCl) heterolysis by 14 orders of magnitude. [5] This is caused by very strong solvation of the transition state. The main factors that affect heterolysis rates are mainly the solvent's polarity and electrophilic as well as its ionizing power.