When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Heterotrophic nutrition - Wikipedia

    en.wikipedia.org/wiki/Heterotrophic_nutrition

    Heterotrophic organisms have to take in all the organic substances they need to survive. All animals, certain types of fungi, and non-photosynthesizing plants are heterotrophic. In contrast, green plants, red algae, brown algae, and cyanobacteria are all autotrophs, which use photosynthesis to produce their own

  3. Heterotroph - Wikipedia

    en.wikipedia.org/wiki/Heterotroph

    Cycle between autotrophs and heterotrophs. Autotrophs use light, carbon dioxide (CO 2), and water to form oxygen and complex organic compounds, mainly through the process of photosynthesis (green arrow). Both types of organisms use such compounds via cellular respiration to both generate ATP and again form CO 2 and water (two red arrows).

  4. Primary nutritional groups - Wikipedia

    en.wikipedia.org/wiki/Primary_nutritional_groups

    Some eukaryotes (heterotrophic protists, fungi, animals) Carbon dioxide-autotroph: Chemo organo autotroph: Some archaea (anaerobic methanotrophic archaea). [9] Chemosynthesis, synthetically autotrophic Escherichia coli bacteria [10] and Pichia pastoris yeast. [11] Inorganic-litho-* Organic-heterotroph: Chemo litho heterotroph: Some bacteria ...

  5. Myco-heterotrophy - Wikipedia

    en.wikipedia.org/wiki/Myco-heterotrophy

    Monotropa uniflora, an obligate myco-heterotroph known to parasitize fungi belonging to the Russulaceae. [1]Myco-heterotrophy (from Greek μύκης mýkes ' fungus ', ἕτερος héteros ' another ', ' different ' and τροφή trophé ' nutrition ') is a symbiotic relationship between certain kinds of plants and fungi, in which the plant gets all or part of its food from parasitism upon ...

  6. Autotroph - Wikipedia

    en.wikipedia.org/wiki/Autotroph

    Thus, heterotrophs – all animals, almost all fungi, as well as most bacteria and protozoa – depend on autotrophs, or primary producers, for the raw materials and fuel they need. Heterotrophs obtain energy by breaking down carbohydrates or oxidizing organic molecules (carbohydrates, fats, and proteins) obtained in food.

  7. Consumer (food chain) - Wikipedia

    en.wikipedia.org/wiki/Consumer_(food_chain)

    Autotrophs are classified as either photoautotrophs (which get energy from the sun, like plants) or chemoautotrophs (which get energy from chemical bonds, like certain bacteria). Consumers are typically viewed as predatory animals such as meat-eaters. However, herbivorous animals and parasitic fungi are also consumers.

  8. Food web - Wikipedia

    en.wikipedia.org/wiki/Food_web

    Position in the food web, or trophic level, is used in ecology to broadly classify organisms as autotrophs or heterotrophs. This is a non-binary classification; some organisms (such as carnivorous plants ) occupy the role of mixotrophs , or autotrophs that additionally obtain organic matter from non-atmospheric sources.

  9. Trophic mutualism - Wikipedia

    en.wikipedia.org/wiki/Trophic_mutualism

    This is also sometimes known as resource-to-resource mutualism. Trophic mutualism often occurs between an autotroph and a heterotroph. [1] Although there are many examples of trophic mutualisms, the heterotroph is generally a fungus or bacteria. This mutualism can be both obligate and opportunistic.