When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Heterotroph - Wikipedia

    en.wikipedia.org/wiki/Heterotroph

    Cycle between autotrophs and heterotrophs. Autotrophs use light, carbon dioxide (CO 2), and water to form oxygen and complex organic compounds, mainly through the process of photosynthesis (green arrow). Both types of organisms use such compounds via cellular respiration to both generate ATP and again form CO 2 and water (two red arrows).

  3. Primary nutritional groups - Wikipedia

    en.wikipedia.org/wiki/Primary_nutritional_groups

    Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).

  4. Heterotrophic nutrition - Wikipedia

    en.wikipedia.org/wiki/Heterotrophic_nutrition

    All heterotrophs (except blood and gut parasites) have to convert solid food into soluble compounds which are capable of being absorbed (digestion). Then the soluble products of digestion for the organism are being broken down for the release of energy (respiration). All heterotrophs depend on autotrophs for their nutrition. Heterotrophic ...

  5. Consumer (food chain) - Wikipedia

    en.wikipedia.org/wiki/Consumer_(food_chain)

    A consumer in a food chain is a living creature that eats organisms from a different population. A consumer is a heterotroph and a producer is an autotroph.Like sea angels, they take in organic moles by consuming other organisms, so they are commonly called consumers.

  6. Autotroph - Wikipedia

    en.wikipedia.org/wiki/Autotroph

    Thus, heterotrophs – all animals, almost all fungi, as well as most bacteria and protozoa – depend on autotrophs, or primary producers, for the raw materials and fuel they need. Heterotrophs obtain energy by breaking down carbohydrates or oxidizing organic molecules (carbohydrates, fats, and proteins) obtained in food.

  7. Chemotroph - Wikipedia

    en.wikipedia.org/wiki/Chemotroph

    Chemoheterotrophs (or chemotrophic heterotrophs) are unable to fix carbon to form their own organic compounds. Chemoheterotrophs can be chemolithoheterotrophs , utilizing inorganic electron sources such as sulfur, or, much more commonly, chemoorganoheterotrophs , utilizing organic electron sources such as carbohydrates , lipids , and proteins .

  8. Food web - Wikipedia

    en.wikipedia.org/wiki/Food_web

    Position in the food web, or trophic level, is used in ecology to broadly classify organisms as autotrophs or heterotrophs. This is a non-binary classification; some organisms (such as carnivorous plants) occupy the role of mixotrophs, or autotrophs that additionally obtain organic matter from non-atmospheric sources.

  9. Ecosystem respiration - Wikipedia

    en.wikipedia.org/wiki/Ecosystem_respiration

    Cellular respiration is the overall relationship between autotrophs and heterotrophs.Autotrophs are organisms that produce their own food through the process of photosynthesis, whereas heterotrophs are organisms that cannot prepare their own food and depend on autotrophs for nutrition.