When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  3. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    Important formulas in kinematics define the velocity and acceleration of points in a moving body as they trace trajectories in three-dimensional space. This is particularly important for the center of mass of a body, which is used to derive equations of motion using either Newton's second law or Lagrange's equations .

  4. Kinematics equations - Wikipedia

    en.wikipedia.org/wiki/Kinematics_equations

    From this point of view the kinematics equations can be used in two different ways. The first called forward kinematics uses specified values for the joint parameters to compute the end-effector position and orientation. The second called inverse kinematics uses the position and orientation of the end-effector to compute the joint parameters ...

  5. Motion - Wikipedia

    en.wikipedia.org/wiki/Motion

    In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. [3] More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables.

  6. Screw theory - Wikipedia

    en.wikipedia.org/wiki/Screw_theory

    The solution is the matrix exponential [ T ( t ) ] = e [ S ] t . {\displaystyle [T(t)]=e^{[S]t}.} This formulation can be generalized such that given an initial configuration g (0) in SE( n ), and a twist ξ in se( n ), the homogeneous transformation to a new location and orientation can be computed with the formula,

  7. Rigid body dynamics - Wikipedia

    en.wikipedia.org/wiki/Rigid_body_dynamics

    The solution of these equations of motion provides a description of the position, the motion and the acceleration of the individual components of the system, and overall the system itself, as a function of time. The formulation and solution of rigid body dynamics is an important tool in the computer simulation of mechanical systems.

  8. Analytical mechanics - Wikipedia

    en.wikipedia.org/wiki/Analytical_mechanics

    A particular solution to Hamilton's equations is called a phase path, a particular curve (q(t),p(t)) subject to the required initial conditions. The set of all phase paths, the general solution to the differential equations, is the phase portrait:

  9. Forward kinematics - Wikipedia

    en.wikipedia.org/wiki/Forward_kinematics

    The kinematics equations for the series chain of a robot are obtained using a rigid transformation [Z] to characterize the relative movement allowed at each joint and separate rigid transformation [X] to define the dimensions of each link. The result is a sequence of rigid transformations alternating joint and link transformations from the base ...