Search results
Results From The WOW.Com Content Network
As noted, Thévenin's theorem was first discovered and published by the German scientist Hermann von Helmholtz in 1853, [1] four years before Thévenin's birth. Thévenin's 1883 proof, described above, is nearer in spirit to modern methods of electrical engineering, and this may explain why his name is more commonly associated with the theorem ...
In general, the concept of source transformation is an application of Thévenin's theorem to a current source, or Norton's theorem to a voltage source. However, this means that source transformation is bound by the same conditions as Thevenin's theorem and Norton's theorem; namely that the load behaves linearly, and does not contain dependent ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Thévenin's theorem – Norton's theorem; History. The use of duality in circuit theory is due to Alexander Russell who published his ideas in 1904. [1] [2] Examples
As a result of studying Kirchhoff's circuit laws and Ohm's law, he developed his famous theorem, Thévenin's theorem, [1] which made it possible to calculate currents in more complex electrical circuits and allowing people to reduce complex circuits into simpler circuits called Thévenin's equivalent circuits.
The Extra Element Theorem (EET) is an analytic technique developed by R. D. Middlebrook for simplifying the process of deriving driving point and transfer functions for linear electronic circuits. [1] Much like Thévenin's theorem, the extra element theorem breaks down one complicated problem into several simpler ones.
Kodaira vanishing theorem (complex manifold) Koebe 1/4 theorem (complex analysis) Kolmogorov extension theorem (stochastic processes) Kolmogorov's three-series theorem (mathematical series) Kolmogorov–Arnold representation theorem (real analysis, approximation theory) Kolmogorov–Arnold–Moser theorem (dynamical systems) KÅ‘nig's theorem ...
Alternatively, Love equivalent problem for field distributions inside the surface can be formulated: this requires the negative of surface currents for the external radiation case. Thus, the surface currents will radiate the fields in the original problem in the inside of the surface; nevertheless, they will produce null external fields. [1]