Search results
Results From The WOW.Com Content Network
Levitation is accomplished by providing an upward force that counteracts the pull of gravity (in relation to gravity on earth), plus a smaller stabilizing force that pushes the object toward a home position whenever it is a small distance away from that home position. The force can be a fundamental force such as magnetic or electrostatic, or it ...
In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents a point P in space. Its length represents the distance in relation to an arbitrary reference origin O , and its direction represents the angular orientation with respect to given reference axes.
Changing orientation of a rigid body is the same as rotating the axes of a reference frame attached to it.. In geometry, the orientation, attitude, bearing, direction, or angular position of an object – such as a line, plane or rigid body – is part of the description of how it is placed in the space it occupies. [1]
A non-flipped image of a right-handed Cartesian coordinate system, illustrating the x (right-left), y (forward-backward) and z (up-down) axes relative to a human being.Body relative directions (also known as egocentric coordinates) [1] are geometrical orientations relative to a body such as a human person's body or a road sign.
In physics and geometry, there are two closely related vector spaces, usually three-dimensional but in general of any finite dimension. Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space.
The terms are mainly used in discussing images of humans, whether in art history, medical contexts such as x-ray images, or elsewhere, but they can be used in describing any object that has an unambiguous front and back (for example furniture [2]) or, [3] when describing things that move or change position, with reference to the original position.
The mathematical description of motion, or kinematics, is based on the idea of specifying positions using numerical coordinates. Movement is represented by these numbers changing over time: a body's trajectory is represented by a function that assigns to each value of a time variable the values of all the position coordinates.
In physics, motion is when an object changes its position with respect to a reference point in a given time. Motion is mathematically described in terms of displacement , distance , velocity , acceleration , speed , and frame of reference to an observer, measuring the change in position of the body relative to that frame with a change in time.