Search results
Results From The WOW.Com Content Network
JSON: No Smile Format Specification: Yes No Yes Partial (JSON Schema Proposal, other JSON schemas/IDLs) Partial (via JSON APIs implemented with Smile backend, on Jackson, Python) — SOAP: W3C: XML: Yes W3C Recommendations: SOAP/1.1 SOAP/1.2: Partial (Efficient XML Interchange, Binary XML, Fast Infoset, MTOM, XSD base64 data) Yes Built-in id ...
JSON Schema specifies a JSON-based format to define the structure of JSON data for validation, documentation, and interaction control. It provides a contract for the JSON data required by a given application and how that data can be modified. [29] JSON Schema is based on the concepts from XML Schema (XSD) but is JSON-based. As in XSD, the same ...
Two relative independent plist handlers are found in GNUstep: the CFPropertyList in libs-core-base (CoreFoundation), and the NSPropertyList in libs-base (Foundation Kit). Both support the binary and XML forms used by macOS to some degree, but the latter is a lot more complete. For example, the two GNUstep-specific formats are only handled in ...
It uses JSON for defining data types and protocols, and serializes data in a compact binary format. Its primary use is in Apache Hadoop, where it can provide both a serialization format for persistent data, and a wire format for communication between Hadoop nodes, and from client programs to the Hadoop services. Avro uses a schema to structure ...
A Jupyter Notebook document is a JSON file, following a versioned schema, usually ending with the ".ipynb" extension. The main parts of the Jupyter Notebooks are: Metadata, Notebook format and list of cells. Metadata is a data Dictionary of definitions to set up and display the notebook. Notebook Format is a version number of the software.
Length-prefixed JSON is also well-suited for TCP applications, where a single "message" may be divided into arbitrary chunks, because the prefixed length tells the parser exactly how many bytes to expect before attempting to parse a JSON string. This example shows two length-prefixed JSON objects (with each length being the byte-length of the ...
The terms schema matching and mapping are often used interchangeably for a database process. For this article, we differentiate the two as follows: schema matching is the process of identifying that two objects are semantically related (scope of this article) while mapping refers to the transformations between the objects.
JSON-LD is designed around the concept of a "context" to provide additional mappings from JSON to an RDF model. The context links object properties in a JSON document to concepts in an ontology. In order to map the JSON-LD syntax to RDF, JSON-LD allows values to be coerced to a specified type or to be tagged with a language.