When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    From a dynamic programming point of view, Dijkstra's algorithm for the shortest path problem is a successive approximation scheme that solves the dynamic programming functional equation for the shortest path problem by the Reaching method.

  3. Activity selection problem - Wikipedia

    en.wikipedia.org/wiki/Activity_selection_problem

    Unlike the unweighted version, there is no greedy solution to the weighted activity selection problem. However, a dynamic programming solution can readily be formed using the following approach: [1] Consider an optimal solution containing activity k. We now have non-overlapping activities on the left and right of k. We can recursively find ...

  4. Dynamic problem (algorithms) - Wikipedia

    en.wikipedia.org/wiki/Dynamic_problem_(algorithms)

    Dynamic problems in computational complexity theory are problems stated in terms of changing input data. In its most general form, a problem in this category is usually stated as follows: In its most general form, a problem in this category is usually stated as follows:

  5. Bellman equation - Wikipedia

    en.wikipedia.org/wiki/Bellman_equation

    The dynamic programming approach describes the optimal plan by finding a rule that tells what the controls should be, given any possible value of the state. For example, if consumption ( c ) depends only on wealth ( W ), we would seek a rule c ( W ) {\displaystyle c(W)} that gives consumption as a function of wealth.

  6. Change-making problem - Wikipedia

    en.wikipedia.org/wiki/Change-making_problem

    The following is a dynamic programming implementation (with Python 3) which uses a matrix to keep track of the optimal solutions to sub-problems, and returns the minimum number of coins, or "Infinity" if there is no way to make change with the coins given. A second matrix may be used to obtain the set of coins for the optimal solution.

  7. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    There is a pseudo-polynomial time algorithm using dynamic programming. There is a fully polynomial-time approximation scheme, which uses the pseudo-polynomial time algorithm as a subroutine, described below. Many cases that arise in practice, and "random instances" from some distributions, can nonetheless be solved exactly.

  8. Heuristic (computer science) - Wikipedia

    en.wikipedia.org/wiki/Heuristic_(computer_science)

    The greedy algorithm heuristic says to pick whatever is currently the best next step regardless of whether that prevents (or even makes impossible) good steps later. It is a heuristic in the sense that practice indicates it is a good enough solution, while theory indicates that there are better solutions (and even indicates how much better, in ...

  9. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    There is similarity between the Russian Doll Search method and dynamic programming. Like dynamic programming, Russian Doll Search solves sub-problems in order to solve the whole problem. But, whereas Dynamic Programming directly combines the results obtained on sub-problems to get the result of the whole problem, Russian Doll Search only uses ...