Search results
Results From The WOW.Com Content Network
However, currently known high-temperature superconductors are brittle ceramics that are expensive to manufacture and not easily formed into wires or other useful shapes. [4] Therefore, the applications for HTS have been where it has some other intrinsic advantage, e.g. in: low thermal loss current leads for LTS devices (low thermal conductivity),
Often superconducting computing is applied to quantum computing, with an important application known as superconducting quantum computing. Superconducting digital logic circuits use single flux quanta (SFQ), also known as magnetic flux quanta, to encode, process, and transport data. SFQ circuits are made up of active Josephson junctions and ...
Metal alloy superconductors can also exhibit type-II behavior (e.g., niobium–titanium, one of the most common superconductors in applied superconductivity), as well as intermetallic compounds like niobium–tin. Other type-II examples are the cuprate-perovskite ceramic materials which have achieved the highest superconducting critical ...
The table below shows some of the parameters of common superconductors. X:Y means material X doped with element Y, T C is the highest reported transition temperature in kelvins and H C is a critical magnetic field in tesla. "BCS" means whether or not the superconductivity is explained within the BCS theory.
BSCCO superconductors already have large-scale applications. For example, tens of kilometers of BSCCO-2223 at 77 K superconducting wires are being used in the current leads of the Large Hadron Collider at CERN [10] (but the main field coils are using metallic lower temperature superconductors, mainly based on niobium–tin).
Generally, the Hamiltonian is the sum of the system's kinetic and potential energy components (analogous to a particle in a potential well). For the Hamiltonians denoted, ϕ {\displaystyle \phi } is the superconducting wave function phase difference across the junction, C J {\displaystyle C_{J}} is the capacitance associated with the Josephson ...
ReBCO superconductors have the potential to sustain stronger magnetic fields than other superconductor materials. Due to their high critical temperature and critical magnetic field, this class of materials are proposed for use in technical applications where conventional low-temperature superconductors do not suffice.
Macroscopic quantum phenomena are processes showing quantum behavior at the macroscopic scale, rather than at the atomic scale where quantum effects are prevalent. The best-known examples of macroscopic quantum phenomena are superfluidity and superconductivity; other examples include the quantum Hall effect, Josephson effect and topological order.