Search results
Results From The WOW.Com Content Network
In many situations, this is the same as considering all partial derivatives simultaneously. The term "total derivative" is primarily used when f is a function of several variables, because when f is a function of a single variable, the total derivative is the same as the ordinary derivative of the function. [1]: 198–203
The partial derivative generalizes the notion of the derivative to higher dimensions. A partial derivative of a multivariable function is a derivative with respect to one variable with all other variables held constant. [1]: 26ff A partial derivative may be thought of as the directional derivative of the function along a coordinate axis.
The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.
In each of the above cases, the functor sends each space to its tangent bundle and it sends each function to its derivative. For example, in the manifold case, the derivative sends a C r-manifold to a C r−1-manifold (its tangent bundle) and a C r-function to its total derivative. There is one requirement for this to be a functor, namely that ...
In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.
In that the existence of uniquely characterises the number ′ (), the fundamental increment lemma can be said to characterise the differentiability of single-variable functions. For this reason, a generalisation of the lemma can be used in the definition of differentiability in multivariable calculus .
The convective derivative takes into account changes due to time dependence and motion through space along a vector field, and is a special case of the total derivative. For vector-valued functions from R to R n (i.e., parametric curves), the Fréchet derivative corresponds to taking the derivative of each component separately. The resulting ...
[a] Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points.