When.com Web Search

  1. Ad

    related to: maxwell equations byjus solutions examples

Search results

  1. Results From The WOW.Com Content Network
  2. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Jefimenko's equations (or the closely related Liénard–Wiechert potentials) are the explicit solution to Maxwell's equations for the electric and magnetic fields created by any given distribution of charges and currents. It assumes specific initial conditions to obtain the so-called "retarded solution", where the only fields present are the ...

  3. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    In fact, Maxwell's equations were crucial in the historical development of special relativity. However, in the usual formulation of Maxwell's equations, their consistency with special relativity is not obvious; it can only be proven by a laborious calculation. For example, consider a conductor moving in the field of a magnet. [8]

  4. Electromagnetism uniqueness theorem - Wikipedia

    en.wikipedia.org/wiki/Electromagnetism...

    The electromagnetism uniqueness theorem states the uniqueness (but not necessarily the existence) of a solution to Maxwell's equations, if the boundary conditions provided satisfy the following requirements: [1] [2] At =, the initial values of all fields (E, H, B and D) everywhere (in the entire volume considered) is specified;

  5. Matrix representation of Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    One of the early uses of the matrix forms of the Maxwell's equations was to study certain symmetries, and the similarities with the Dirac equation. The matrix form of the Maxwell's equations is used as a candidate for the Photon Wavefunction. [8] Historically, the geometrical optics is based on the Fermat's principle of least time. Geometrical ...

  6. Heinrich Hertz - Wikipedia

    en.wikipedia.org/wiki/Heinrich_Hertz

    Heinrich Rudolf Hertz (/ h ɜːr t s /, HURTS; German: [ˈhaɪnʁɪç hɛʁts]; [1] [2] 22 February 1857 – 1 January 1894) was a German physicist who first conclusively proved the existence of the electromagnetic waves predicted by James Clerk Maxwell's equations of electromagnetism.

  7. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    The Maxwell–Faraday equation (listed as one of Maxwell's equations) describes the fact that a spatially varying (and also possibly time-varying, depending on how a magnetic field varies in time) electric field always accompanies a time-varying magnetic field, while Faraday's law states that emf (electromagnetic work done on a unit charge when ...

  8. Inhomogeneous electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Inhomogeneous...

    Maxwell's equations can directly give inhomogeneous wave equations for the electric field E and magnetic field B. [1] Substituting Gauss's law for electricity and Ampère's law into the curl of Faraday's law of induction, and using the curl of the curl identity ∇ × (∇ × X) = ∇(∇ ⋅ X) − ∇ 2 X (The last term in the right side is the vector Laplacian, not Laplacian applied on ...

  9. Electrovacuum solution - Wikipedia

    en.wikipedia.org/wiki/Electrovacuum_solution

    In general relativity, an electrovacuum solution (electrovacuum) is an exact solution of the Einstein field equation in which the only nongravitational mass–energy present is the field energy of an electromagnetic field, which must satisfy the (curved-spacetime) source-free Maxwell equations appropriate to the given geometry.