Search results
Results From The WOW.Com Content Network
The strictly jammed (mechanically stable even as a finite system) regular sphere packing with the lowest known density is a diluted ("tunneled") fcc crystal with a density of only π √ 2 /9 ≈ 0.49365. [6]
Packing density Optimality Arrangement Diagram Exact form Approximate 1 1.0000 1 Trivially optimal. Point: 2 0.5000 0.25 ... Sphere packing in a sphere.
Sphere packing in a cylinder is a three-dimensional packing problem with the objective of packing a given number of identical spheres inside a cylinder of specified diameter and length. For cylinders with diameters on the same order of magnitude as the spheres, such packings result in what are called columnar structures .
The higher the packing density, the less empty space there is in the packing and thus the smaller the volume of the hull (in comparison to other packings with the same number and size of spheres). To pack the spheres efficiently, it might be asked which packing has the highest possible density.
[1] [2] Highest density is known only for 1, 2, 3, 8, and 24 dimensions. [3] Many crystal structures are based on a close-packing of a single kind of atom, or a close-packing of large ions with smaller ions filling the spaces between them. The cubic and hexagonal arrangements are very close to one another in energy, and it may be difficult to ...
Random close packing (RCP) of spheres is an empirical parameter used to characterize the maximum volume fraction of solid objects obtained when they are packed randomly. For example, when a solid container is filled with grain, shaking the container will reduce the volume taken up by the objects, thus allowing more grain to be added to the container.
A compact binary circle packing with the most similarly sized circles possible. [7] It is also the densest possible packing of discs with this size ratio (ratio of 0.6375559772 with packing fraction (area density) of 0.910683). [8] There are also a range of problems which permit the sizes of the circles to be non-uniform.
However, the optimal sphere packing question in dimensions other than 1, 2, 3, 8, and 24 is still open. Ulam's packing conjecture It is unknown whether there is a convex solid whose optimal packing density is lower than that of the sphere.