When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Unit circle - Wikipedia

    en.wikipedia.org/wiki/Unit_circle

    Since C = 2πr, the circumference of a unit circle is 2π. In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane.

  3. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    All of the trigonometric functions of the angle θ (theta) can be constructed geometrically in terms of a unit circle centered at O. Sine function on unit circle (top) and its graph (bottom) In this illustration, the six trigonometric functions of an arbitrary angle θ are represented as Cartesian coordinates of points related to the unit circle.

  4. Limaçon - Wikipedia

    en.wikipedia.org/wiki/Limaçon

    Construction of the limaçon r = 2 + cos(π – θ) with polar coordinates' origin at (x, y) = (⁠ 1 / 2 ⁠, 0). In geometry, a limaçon or limacon / ˈ l ɪ m ə s ɒ n /, also known as a limaçon of Pascal or Pascal's Snail, is defined as a roulette curve formed by the path of a point fixed to a circle when that circle rolls around the outside of a circle of equal radius.

  5. Radian - Wikipedia

    en.wikipedia.org/wiki/Radian

    One radian is defined as the angle at the center of a circle in a plane that subtends an arc whose length equals the radius of the circle. [6] More generally, the magnitude in radians of a subtended angle is equal to the ratio of the arc length to the radius of the circle; that is, =, where θ is the magnitude in radians of the subtended angle, s is arc length, and r is radius.

  6. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    The complex number z can be represented in rectangular form as = + where i is the imaginary unit, or can alternatively be written in polar form as = (⁡ + ⁡) and from there, by Euler's formula, [14] as = = ⁡. where e is Euler's number, and φ, expressed in radians, is the principal value of the complex number function arg applied to x + iy ...

  7. Exact trigonometric values - Wikipedia

    en.wikipedia.org/wiki/Exact_trigonometric_values

    As discussed in § Constructibility, only certain angles that are rational multiples of radians have trigonometric values that can be expressed with square roots. The angle 1°, being π / 180 = π / ( 2 2 ⋅ 3 2 ⋅ 5 ) {\displaystyle \pi /180=\pi /(2^{2}\cdot 3^{2}\cdot 5)} radians, has a repeated factor of 3 in the denominator and therefore ...

  8. Bhāskara I's sine approximation formula - Wikipedia

    en.wikipedia.org/wiki/Bhāskara_I's_sine...

    The formula is given in verses 17–19, chapter VII, Mahabhaskariya of Bhāskara I. A translation of the verses is given below: [3] (Now) I briefly state the rule (for finding the bhujaphala and the kotiphala, etc.) without making use of the Rsine-differences 225, etc. Subtract the degrees of a bhuja (or koti) from the degrees of a half circle (that is, 180 degrees).

  9. Angle - Wikipedia

    en.wikipedia.org/wiki/Angle

    The radian is determined by the circumference of a circle that is equal in length to the radius of the circle (n = 2 π = 6.283...). It is the angle subtended by an arc of a circle that has the same length as the circle's radius. The symbol for radian is rad. One turn is 2 π radians, and one radian is ⁠ 180° / π ⁠, or