Search results
Results From The WOW.Com Content Network
That is, they loop over the cycles, moving the data from one location to the next in the cycle. In pseudocode form: for each length>1 cycle C of the permutation pick a starting address s in C let D = data at s let x = predecessor of s in the cycle while x ≠ s move data from x to successor of x let x = predecessor of x move data from D to ...
Power Query was first announced in 2011 under the codename "Data Explorer" as part of Azure SQL Labs. In 2013, in order to expand on the self-service business intelligence capabilities of Microsoft Excel, the project was redesigned to be packaged as an add-in Excel and was renamed "Data Explorer Preview for Excel" [4], and was made available for Excel 2010 and Excel 2013. [5]
The transpose of a matrix A, denoted by A T, [3] ⊤ A, A ⊤, , [4] [5] A′, [6] A tr, t A or A t, may be constructed by any one of the following methods: Reflect A over its main diagonal (which runs from top-left to bottom-right) to obtain A T; Write the rows of A as the columns of A T; Write the columns of A as the rows of A T
The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...
The Z-ordering can be used to efficiently build a quadtree (2D) or octree (3D) for a set of points. [4] [5] The basic idea is to sort the input set according to Z-order.Once sorted, the points can either be stored in a binary search tree and used directly, which is called a linear quadtree, [6] or they can be used to build a pointer based quadtree.
In linear algebra, linear transformations can be represented by matrices.If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of , [1] such that: = Note that has rows and columns, whereas the transformation is from to .
Thus each orthogonal group falls into two pieces; and because the projection map splits, O(n) is a semidirect product of SO(n) by O(1). In practical terms, a comparable statement is that any orthogonal matrix can be produced by taking a rotation matrix and possibly negating one of its columns, as we saw with 2 × 2 matrices.
The column of a positive edge has a 1 in the row corresponding to one endpoint and a −1 in the row corresponding to the other endpoint, just like an edge in an ordinary (unsigned) graph. The column of a negative edge has either a 1 or a −1 in both rows. The line graph and Kirchhoff matrix properties generalize to signed graphs.