When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Steady state (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Steady_state_(chemistry)

    The steady state approximation, [1] occasionally called the stationary-state approximation or Bodenstein's quasi-steady state approximation, involves setting the rate of change of a reaction intermediate in a reaction mechanism equal to zero so that the kinetic equations can be simplified by setting the rate of formation of the intermediate equal to the rate of its destruction.

  3. Linear stability - Wikipedia

    en.wikipedia.org/wiki/Linear_stability

    In mathematics, in the theory of differential equations and dynamical systems, a particular stationary or quasistationary solution to a nonlinear system is called linearly unstable if the linearization of the equation at this solution has the form / =, where r is the perturbation to the steady state, A is a linear operator whose spectrum contains eigenvalues with positive real part.

  4. Steady state - Wikipedia

    en.wikipedia.org/wiki/Steady_state

    Steady state determination is an important topic, because many design specifications of electronic systems are given in terms of the steady-state characteristics. Periodic steady-state solution is also a prerequisite for small signal dynamic modeling. Steady-state analysis is therefore an indispensable component of the design process.

  5. Lindemann mechanism - Wikipedia

    en.wikipedia.org/wiki/Lindemann_mechanism

    The rate equation for the rate of formation of product P may be obtained by using the steady-state approximation, in which the concentration of intermediate A* is assumed constant because its rates of production and consumption are (almost) equal. [8] This assumption simplifies the calculation of the rate equation.

  6. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    As an example, consider the gas-phase reaction NO 2 + CO → NO + CO 2.If this reaction occurred in a single step, its reaction rate (r) would be proportional to the rate of collisions between NO 2 and CO molecules: r = k[NO 2][CO], where k is the reaction rate constant, and square brackets indicate a molar concentration.

  7. Reaction progress kinetic analysis - Wikipedia

    en.wikipedia.org/wiki/Reaction_progress_kinetic...

    Consider the simple example where the catalyst associates with substrate A, followed by reaction with B to form product, P and free catalyst. Regardless of the approximation applied, multiple independent parameters (k 1, k −1, and k 2 in the case of steady-state; k 2 and K 1 in the case of pre-equilibrium) are required to define the system ...

  8. Radical polymerization - Wikipedia

    en.wikipedia.org/wiki/Radical_polymerization

    Under the steady-state approximation, the concentration of the active growing chains remains constant, i.e. the rates of initiation and of termination are equal. The concentration of active chain can be derived and expressed in terms of the other known species in the system.

  9. Finite volume method for one-dimensional steady state ...

    en.wikipedia.org/wiki/Finite_volume_method_for...

    These equations can be different in nature, e.g. elliptic, parabolic, or hyperbolic. The first well-documented use of this method was by Evans and Harlow (1957) at Los Alamos. The general equation for steady diffusion can easily be derived from the general transport equation for property Φ by deleting transient and convective terms. [1]