When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    A closely related notion of curvature comes from gauge theory in physics, where the curvature represents a field and a vector potential for the field is a quantity that is in general path-dependent: it may change if an observer moves around a loop. Two more generalizations of curvature are the scalar curvature and Ricci curvature. In a curved ...

  3. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    Loosely speaking, the vector functions representing C and S agree together with their first and second derivatives at P. If the derivative of the curvature with respect to s is nonzero at P then the osculating circle crosses the curve C at P. Points P at which the derivative of the curvature is zero are called vertices.

  4. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    A parametric C r-curve or a C r-parametrization is a vector-valued function: that is r-times continuously differentiable (that is, the component functions of γ are continuously differentiable), where , {}, and I is a non-empty interval of real numbers.

  5. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.

  6. Fundamental theorem of curves - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of_curves

    From just the curvature and torsion, the vector fields for the tangent, normal, and binormal vectors can be derived using the Frenet–Serret formulas. Then, integration of the tangent field (done numerically, if not analytically) yields the curve.

  7. Normal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Normal_(geometry)

    A normal vector of length one is called a unit normal vector. A curvature vector is a normal vector whose length is the curvature of the object. Multiplying a normal vector by −1 results in the opposite vector, which may be used for indicating sides (e.g., interior or exterior).

  8. Berry connection and curvature - Wikipedia

    en.wikipedia.org/wiki/Berry_connection_and_curvature

    The Berry curvature per solid angle is given by ¯ = / ⁡ = /. In this case, the Berry phase corresponding to any given path on the unit sphere S 2 {\displaystyle {\mathcal {S}}^{2}} in magnetic-field space is just half the solid angle subtended by the path.

  9. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...