Ad
related to: angle calculator with 3 sides and 4
Search results
Results From The WOW.Com Content Network
Its sides are therefore in the ratio 1 : √ φ : φ. Thus, the shape of the Kepler triangle is uniquely determined (up to a scale factor) by the requirement that its sides be in geometric progression. The 3–4–5 triangle is the unique right triangle (up to scaling) whose sides are in arithmetic progression. [9]
A right triangle ABC with its right angle at C, hypotenuse c, and legs a and b,. A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1 ⁄ 4 turn or 90 degrees).
Given a triangle with sides of length a, b, and c, if a 2 + b 2 = c 2, then the angle between sides a and b is a right angle. For any three positive real numbers a , b , and c such that a 2 + b 2 = c 2 , there exists a triangle with sides a , b and c as a consequence of the converse of the triangle inequality .
An equivalent condition is that opposite sides are parallel (a square is a parallelogram), and that the diagonals perpendicularly bisect each other and are of equal length. A quadrilateral is a square if and only if it is both a rhombus and a rectangle (i.e., four equal sides and four equal angles).
Triangles have many types based on the length of the sides and the angles. A triangle whose sides are all the same length is an equilateral triangle, [3] a triangle with two sides having the same length is an isosceles triangle, [4] [a] and a triangle with three different-length sides is a scalene triangle. [7]
For example, if one of the legs of a right angle has a length of 3 and the other has a length of 4, then their squares add up to 25 = 9 + 16 = 3 × 3 + 4 × 4. Since 25 is the square of the hypotenuse, the length of the hypotenuse is the square root of 25, that is, 5.
Two sides and the included angle (SAS, side-angle-side) Two sides and an angle not included between them (SSA), if the side length adjacent to the angle is shorter than the other side length. A side and the two angles adjacent to it (ASA) A side, the angle opposite to it and an angle adjacent to it (AAS).
Heron of Alexandria found what is known as Heron's formula for the area of a triangle in terms of its sides, and a proof can be found in his book, Metrica, written around 60 CE.