When.com Web Search

  1. Ad

    related to: inverse circular functions lecture 2

Search results

  1. Results From The WOW.Com Content Network
  2. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/.../Inverse_trigonometric_functions

    Trigonometric functions of inverse trigonometric functions are tabulated below. A quick way to derive them is by considering the geometry of a right-angled triangle, with one side of length 1 and another side of length , then applying the Pythagorean theorem and definitions of the trigonometric ratios.

  3. Inverse curve - Wikipedia

    en.wikipedia.org/wiki/Inverse_curve

    In inversive geometry, an inverse curve of a given curve C is the result of applying an inverse operation to C. Specifically, with respect to a fixed circle with center O and radius k the inverse of a point Q is the point P for which P lies on the ray OQ and OP·OQ = k 2. The inverse of the curve C is then the locus of P as Q runs over C.

  4. Gudermannian function - Wikipedia

    en.wikipedia.org/wiki/Gudermannian_function

    Twice the area of the purple triangle is the stereographic projection s = tan ⁠ 1 / 2 ⁠ ϕ = tanh ⁠ 1 / 2 ⁠ ψ. The blue point has coordinates (cosh ψ, sinh ψ). The red point has coordinates (cos ϕ, sin ϕ). The purple point has coordinates (0, s). Graph of the Gudermannian function. Graph of the inverse Gudermannian function.

  5. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.

  6. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.

  7. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  8. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle...

    The tangent half-angle substitution relates an angle to the slope of a line. Introducing a new variable = ⁡, sines and cosines can be expressed as rational functions of , and can be expressed as the product of and a rational function of , as follows: ⁡ = +, ⁡ = +, = +.

  9. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    P ' is the inverse of P with respect to the circle. To invert a number in arithmetic usually means to take its reciprocal. A closely related idea in geometry is that of "inverting" a point. In the plane, the inverse of a point P with respect to a reference circle (Ø) with center O and radius r is a point P ', lying on the ray from O through P ...