Search results
Results From The WOW.Com Content Network
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
This module is subject to page protection.It is a highly visible module in use by a very large number of pages, or is substituted very frequently. Because vandalism or mistakes would affect many pages, and even trivial editing might cause substantial load on the servers, it is protected from editing.
While the indexes in a Set object are unique, each index in a Bag object can appear more than once. [31] An OrderedCollection is a mixin class that defines the basic methods for all collections that have an inherent index order, such as the List, Queue, CircularQueue and Array classes. A List object allows new items, for which a new index is ...
Switch statements function somewhat similarly to the if statement used in programming languages like C/C++, C#, Visual Basic .NET, Java and exist in most high-level imperative programming languages such as Pascal, Ada, C/C++, C#, [1]: 374–375 Visual Basic .NET, Java, [2]: 157–167 and in many other types of language, using such keywords as ...
A vector treated as an array of numbers by writing as a row vector or column vector (whichever is used depends on convenience or context): = (), = Index notation allows indication of the elements of the array by simply writing a i, where the index i is known to run from 1 to n, because of n-dimensions. [1]
To illustrate, suppose a is the memory address of the first element of an array, and i is the index of the desired element. To compute the address of the desired element, if the index numbers count from 1, the desired address is computed by this expression: + (), where s is the size of each element. In contrast, if the index numbers count from ...
To index the skip list and find the i'th value, traverse the skip list while counting down the widths of each traversed link. Descend a level whenever the upcoming width would be too large. For example, to find the node in the fifth position (Node 5), traverse a link of width 1 at the top level.
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.