Search results
Results From The WOW.Com Content Network
In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges.
Each Givens rotation can be done in O(n) steps when the pivot element p is known. However the search for p requires inspection of all N ≈ 1 / 2 n 2 off-diagonal elements, which means this search dominates the overall complexity and pushes the computational complexity of a sweep in the classical Jacobi algorithm to ().
The Jacobi preconditioner is one of the simplest forms of ... must be applied at each step of the iterative linear solver, it should have a small cost ...
In linear systems, the two main classes of relaxation methods are stationary iterative methods, and the more general Krylov subspace methods. The Jacobi method is a simple relaxation method. The Gauss–Seidel method is an improvement upon the Jacobi method.
In mathematics, the Jacobi method for complex Hermitian matrices is a generalization of the Jacobi iteration method. The Jacobi iteration method is also explained in "Introduction to Linear Algebra" by Strang (1993).
In computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the i-th approximation (called an "iterate") is derived from the previous ones.
A comparison of the convergence of gradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2).
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...