When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    With n, x, y, z ∈ N (meaning that n, x, y, z are all positive whole numbers) and n > 2, the equation x n + y n = z n has no solutions. Most popular treatments of the subject state it this way. It is also commonly stated over Z: [16] Equivalent statement 1: x n + y n = z n, where integer n ≥ 3, has no non-trivial solutions x, y, z ∈ Z.

  3. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    As shown below, his proof is equivalent to demonstrating that the equation x 4 − y 4 = z 2. has no primitive solutions in integers (no pairwise coprime solutions). In turn, this is sufficient to prove Fermat's Last Theorem for the case n = 4, since the equation a 4 + b 4 = c 4 can be written as c 4 − b 4 = (a 2) 2.

  4. Proof by infinite descent - Wikipedia

    en.wikipedia.org/wiki/Proof_by_infinite_descent

    It is a method which relies on the well-ordering principle, and is often used to show that a given equation, such as a Diophantine equation, has no solutions. [ 3 ] [ 4 ] Typically, one shows that if a solution to a problem existed, which in some sense was related to one or more natural numbers , it would necessarily imply that a second ...

  5. Beal conjecture - Wikipedia

    en.wikipedia.org/wiki/Beal_conjecture

    The equation + = has no solutions in positive integers and pairwise coprime integers A, B, C if x, y, z ≥ 2. The conjecture was formulated in 1993 by Andrew Beal , a banker and amateur mathematician , while investigating generalizations of Fermat's Last Theorem .

  6. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    In general, a system with fewer equations than unknowns has infinitely many solutions, but it may have no solution. Such a system is known as an underdetermined system. In general, a system with the same number of equations and unknowns has a single unique solution. In general, a system with more equations than unknowns has no solution.

  7. Linear equation - Wikipedia

    en.wikipedia.org/wiki/Linear_equation

    Vertical line of equation x = a Horizontal line of equation y = b. Each solution (x, y) of a linear equation + + = may be viewed as the Cartesian coordinates of a point in the Euclidean plane. With this interpretation, all solutions of the equation form a line, provided that a and b are not both zero. Conversely, every line is the set of all ...

  8. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    One particular solution is x = 0, y = 0, z = 0. Two other solutions are x = 3, y = 6, z = 1, and x = 8, y = 9, z = 2. There is a unique plane in three-dimensional space which passes through the three points with these coordinates, and this plane is the set of all points whose coordinates are solutions of the equation.

  9. Extraneous and missing solutions - Wikipedia

    en.wikipedia.org/wiki/Extraneous_and_missing...

    Therefore, the solution = is extraneous and not valid, and the original equation has no solution. For this specific example, it could be recognized that (for the value x = − 2 {\displaystyle x=-2} ), the operation of multiplying by ( x − 2 ) ( x + 2 ) {\displaystyle (x-2)(x+2)} would be a multiplication by zero.