Ads
related to: sample of calculus problem based research questionsstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
The Clay Mathematics Institute officially designated the title Millennium Problem for the seven unsolved mathematical problems, the Birch and Swinnerton-Dyer conjecture, Hodge conjecture, Navier–Stokes existence and smoothness, P versus NP problem, Riemann hypothesis, Yang–Mills existence and mass gap, and the Poincaré conjecture at the ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Rule 110 - most questions involving "can property X appear later" are undecidable. The problem of determining whether a quantum mechanical system has a spectral gap. [9] [10] Finding the capacity of an information-stable finite state machine channel. [11] In network coding, determining whether a network is solvable. [12] [13]
Fundamental theorem of calculus; Integration by parts; Inverse chain rule method; Integration by substitution. Tangent half-angle substitution; Differentiation under the integral sign; Trigonometric substitution; Partial fractions in integration. Quadratic integral; Proof that 22/7 exceeds π; Trapezium rule; Integral of the secant function ...
The 6th problem concerns the axiomatization of physics, a goal that 20th-century developments seem to render both more remote and less important than in Hilbert's time. Also, the 4th problem concerns the foundations of geometry, in a manner that is now generally judged to be too vague to enable a definitive answer.
In mathematics, Tarski's plank problem is a question about coverings of convex regions in n-dimensional Euclidean space by "planks": regions between two hyperplanes. Alfred Tarski asked if the sum of the widths of the planks must be at least the minimum width of the convex region. The question was answered affirmatively by Thøger Bang (1950 ...