Search results
Results From The WOW.Com Content Network
In physics, the gyromagnetic ratio (also sometimes known as the magnetogyric ratio [1] in other disciplines) of a particle or system is the ratio of its magnetic moment to its angular momentum, and it is often denoted by the symbol γ, gamma.
Gamma rays are produced during gamma decay, which normally occurs after other forms of decay occur, such as alpha or beta decay. A radioactive nucleus can decay by the emission of an α or β particle. The daughter nucleus that results is usually left in an excited state. It can then decay to a lower energy state by emitting a gamma ray photon ...
The effective mass is a quantity that is used to simplify band structures by modeling the behavior of a free particle with that mass. For some purposes and some materials, the effective mass can be considered to be a simple constant of a material.
Thus, the gyroradius is directly proportional to the particle mass and perpendicular velocity, while it is inversely proportional to the particle electric charge and the magnetic field strength. The time it takes the particle to complete one revolution, called the period , can be calculated to be T g = 2 π r g v ⊥ . {\displaystyle T_{g ...
All quantities are in Gaussian units except energy and temperature which are in electronvolts.For the sake of simplicity, a single ionic species is assumed. The ion mass is expressed in units of the proton mass, = / and the ion charge in units of the elementary charge, = / (in the case of a fully ionized atom, equals to the respective atomic number).
Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field.. Here subscripts e and m are used to differ between electric and magnetic charges.
When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.
Another possibility to consider is that the neutrino satisfies the Majorana equation, which at first seems possible due to its zero electric charge. In this case a new Majorana mass term is added to the Yukawa sector: = (¯ + ¯) where C denotes a charge conjugated (i.e. anti-) particle, and the terms are consistently all left (or all right ...