Search results
Results From The WOW.Com Content Network
Hand peening may also be performed after welding to help relieve the tensile stresses that develop on cooling in the welded metal (as well as the surrounding base metal). The level of reduction in tensile stress is minimal and only occurs on or near to the weld surface.
Shot peening is a cold working process used to produce a compressive residual stress layer and modify the mechanical properties of metals and composites. It entails striking a surface with shot (round metallic, glass, or ceramic particles) with force sufficient to create plastic deformation .
This technique is part of the High Frequency Mechanical Impact (HFMI) processes. Other acronyms are also equivalent: Ultrasonic Needle Peening (UNP), Ultrasonic Peening (UP). Ultrasonic impact treatment can result in controlled residual compressive stress, grain refinement and grain size reduction.
Laser peening (LP), or laser shock peening (LSP), is a surface engineering process used to impart beneficial residual stresses in materials. The deep, high-magnitude compressive residual stresses induced by laser peening increase the resistance of materials to surface-related failures, such as fatigue, fretting fatigue, and stress corrosion cracking.
The thermal method involves changing the temperature of the entire part uniformly, either through heating or cooling. When parts are heated for stress relief, the process may also be known as stress relief bake. [13] Cooling parts for stress relief is known as cryogenic stress relief and is relatively uncommon. [citation needed]
Shot peening is a restoration process for flattening a deformed steel belt in which the surface of the belt is impacted by small stainless steel or carbon steel balls, called peening shot. Each ball that strikes the belt acts like a peening hammer, creating a small indentation, or dimple, on the surface.
As the weld cools, residual stress is formed. [2] For thicker materials, these stresses can reach an unacceptable level and exceed design stresses. Therefore, the part is heated to a specified temperature for a given amount of time to reduce these stresses to an acceptable level. [1]
The stress relief treatment resulted in 47% growth of the original, large peak, while it shifted to the left 28-RPM (less than 0.75%). Figure 5: Vibratory Stress Relief was performed on this mild steel weldment weighing almost 12 tons. Overall size was 17' × 15' × 2' (≈ 5.2 × 5.6 × 0.6 meters).