Search results
Results From The WOW.Com Content Network
In statistics, the Pearson correlation coefficient (PCC) [a] is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations ; thus, it is essentially a normalized measurement of the covariance, such that the result ...
A correlation coefficient is a numerical measure of some type of linear correlation, meaning a statistical relationship between two variables. [a] The variables may be two columns of a given data set of observations, often called a sample, or two components of a multivariate random variable with a known distribution.
Some correlation statistics, such as the rank correlation coefficient, are also invariant to monotone transformations of the marginal distributions of X and/or Y. Pearson/Spearman correlation coefficients between X and Y are shown when the two variables' ranges are unrestricted, and when the range of X is restricted to the interval (0,1).
Pearson's correlation, often denoted r and introduced by Karl Pearson, is widely used as an effect size when paired quantitative data are available; for instance if one were studying the relationship between birth weight and longevity. The correlation coefficient can also be used when the data are binary.
In statistics, the intraclass correlation, or the intraclass correlation coefficient (ICC), [1] is a descriptive statistic that can be used when quantitative measurements are made on units that are organized into groups. It describes how strongly units in the same group resemble each other.
In statistics, Spearman's rank correlation coefficient or Spearman's ρ, named after Charles Spearman [1] and often denoted by the Greek letter (rho) or as , is a nonparametric measure of rank correlation (statistical dependence between the rankings of two variables).
In statistics, the Kendall rank correlation coefficient, commonly referred to as Kendall's τ coefficient (after the Greek letter τ, tau), is a statistic used to measure the ordinal association between two measured quantities.
In statistics, the coefficient of multiple correlation is a measure of how well a given variable can be predicted using a linear function of a set of other variables. It is the correlation between the variable's values and the best predictions that can be computed linearly from the predictive variables. [1]