Search results
Results From The WOW.Com Content Network
A smaller type of isolated-phase bus is manufactured for direct-current circuits; this may be used in the field circuit of a generator. Currently, the isolated-phase bus world record current is 52,000 A, for bus manufactured by Alstom Power (since 2015 General Electric Power) and installed at the Civaux Nuclear Power Plant, in 1997.
For very large currents in generating stations or substations, where it is difficult to provide circuit protection, an isolated-phase bus is used. Each phase of the circuit is run in a separate grounded metal enclosure. The only fault possible is a phase-to-ground fault, since the enclosures are separated. This type of bus can be rated up to ...
A typical one-line diagram with annotated power flows. Red boxes represent circuit breakers, grey lines represent three-phase bus and interconnecting conductors, the orange circle represents an electric generator, the green spiral is an inductor, and the three overlapping blue circles represent a double-wound transformer with a tertiary winding.
A single bus consists of a wire pair with 70–85 Ω impedance at 1 MHz. Where a circular connector is used, its center pin is used for the high (positive) Manchester bi-phase signal. Transmitters and receivers couple to the bus via isolation transformers, and stub connections branch off using a pair of isolation resistors and, optionally, a ...
isolated-phase bus A bus where each phase is in its own grounded metal enclosure to prevent faults from spreading from phase to phase; often used in large power plant generators. isolation transformer A transformer especially intended to prevent leakage current from passing from its primary circuit to the secondary circuit. iterative learning ...
A plug-in bus duct system or busway can have disconnect switches and other devices mounted on it, for example, to distribute power along a long building. Many forms of busway allow plug-in devices such as switches and motor starters to be easily moved; this provides flexibility for changes on an assembly line, for example. [4]
The nodal admittance matrix of a power system is a form of Laplacian matrix of the nodal admittance diagram of the power system, which is derived by the application of Kirchhoff's laws to the admittance diagram of the power system. Starting from the single line diagram of a power system, the nodal admittance diagram is derived by:
SWER's main advantage is its low cost. It is often used in sparsely populated areas where the cost of building an isolated distribution line cannot be justified. Capital costs are roughly 50% of an equivalent two-wire single-phase line. They can cost 30% of 3-wire three-phase systems. Maintenance costs are roughly 50% of an equivalent three ...