Search results
Results From The WOW.Com Content Network
Si + 3 HCl → HSiCl 3 + H 2. The trichlorosilane is then converted to a mixture of silane and silicon tetrachloride: 4 HSiCl 3 → SiH 4 + 3 SiCl 4. This redistribution reaction requires a catalyst. The most commonly used catalysts for this process are metal halides, particularly aluminium chloride. This is referred to as a redistribution ...
Valence shell electron pair repulsion (VSEPR) theory (/ ˈ v ɛ s p ər, v ə ˈ s ɛ p ər / VESP-ər, [1]: 410 və-SEP-ər [2]) is a model used in chemistry to predict the geometry of individual molecules from the number of electron pairs surrounding their central atoms. [3]
This would result in the geometry of a regular tetrahedron with each bond angle equal to arccos(− 1 / 3 ) ≈ 109.5°. However, the three hydrogen atoms are repelled by the electron lone pair in a way that the geometry is distorted to a trigonal pyramid (regular 3-sided pyramid) with bond angles of 107°.
The geometry is prevalent for transition metal complexes with d 8 configuration, which includes Rh(I), Ir(I), Pd(II), Pt(II), and Au(III). Notable examples include the anticancer drugs cisplatin, [PtCl 2 (NH 3) 2], and carboplatin. Many homogeneous catalysts are square planar in their resting state, such as Wilkinson's catalyst and Crabtree's ...
[1] [2] It is also known as the Pimentel–Rundle three-center model after the work published by George C. Pimentel in 1951, [3] which built on concepts developed earlier by Robert E. Rundle for electron-deficient bonding. [4] [5] An extended version of this model is used to describe the whole class of hypervalent molecules such as phosphorus ...
3-Silylhexasilane, H 3 Si−SiH 2 −SiH(−SiH 3)−SiH 2 −SiH 2 −SiH 3, is the simplest chiral binary noncyclic silicon hydride. Cyclosilanes also exist. They are structurally analogous to the cycloalkanes, with the formula Si n H 2n, n > 2.
Aluminium monobromide has been crystallographically characterized in the form the tetrameric adduct Al 4 Br 4 (NEt 3) 4 (Et = C 2 H 5). This species is electronically related to cyclobutane. This species is electronically related to cyclobutane.
In chemistry, a trigonal bipyramid formation is a molecular geometry with one atom at the center and 5 more atoms at the corners of a triangular bipyramid. [1] This is one geometry for which the bond angles surrounding the central atom are not identical (see also pentagonal bipyramid), because there is no geometrical arrangement with five terminal atoms in equivalent positions.