When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Negative mass - Wikipedia

    en.wikipedia.org/wiki/Negative_mass

    In theoretical physics, negative mass is a hypothetical type of exotic matter whose mass is of opposite sign to the mass of normal matter, e.g. −1 kg. [1] [2] Such matter would violate one or more energy conditions and exhibit strange properties such as the oppositely oriented acceleration for an applied force orientation.

  3. Negative energy - Wikipedia

    en.wikipedia.org/wiki/Negative_energy

    The negative-energy particle then crosses the event horizon into the black hole, with the law of conservation of energy requiring that an equal amount of positive energy should escape. In the Penrose process , a body divides in two, with one half gaining negative energy and falling in, while the other half gains an equal amount of positive ...

  4. Zero-energy universe - Wikipedia

    en.wikipedia.org/wiki/Zero-energy_universe

    Gravitational energy from visible matter accounts for 26–37% of the observed total massenergy density. [15] Therefore, to fit the concept of a "zero-energy universe" to the observed universe, other negative energy reservoirs besides gravity from baryonic matter are necessary. These reservoirs are frequently assumed to be dark matter. [16]

  5. Exotic matter - Wikipedia

    en.wikipedia.org/wiki/Exotic_matter

    Negative mass would possess some strange properties, such as accelerating in the direction opposite of applied force. Despite being inconsistent with the expected behavior of "normal" matter, negative mass is mathematically consistent and introduces no violation of conservation of momentum or energy .

  6. Anti-gravity - Wikipedia

    en.wikipedia.org/wiki/Anti-gravity

    Notice that because the negative mass acquires negative kinetic energy, the total energy of the accelerating masses remains at zero. Forward pointed out that the self-acceleration effect is due to the negative inertial mass, and could be seen induced without the gravitational forces between the particles. [19]

  7. Gravitational interaction of antimatter - Wikipedia

    en.wikipedia.org/wiki/Gravitational_interaction...

    Since this C-inversion does not affect gravitational mass, the CPT theorem predicts that the gravitational mass of antimatter is the same as that of ordinary matter. [5] A repulsive gravity is then excluded, since that would imply a difference in sign between the observable gravitational mass of matter and antimatter. [citation needed]

  8. Energy condition - Wikipedia

    en.wikipedia.org/wiki/Energy_condition

    In relativistic classical field theories of gravitation, particularly general relativity, an energy condition is a generalization of the statement "the energy density of a region of space cannot be negative" in a relativistically phrased mathematical formulation. There are multiple possible alternative ways to express such a condition such that ...

  9. Zero-point energy - Wikipedia

    en.wikipedia.org/wiki/Zero-point_energy

    Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly fluctuate in their lowest energy state as described by the Heisenberg uncertainty principle. [1] Therefore, even at absolute zero, atoms and molecules retain some vibrational motion.