When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Skew-symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Skew-symmetric_matrix

    The elements on the diagonal of a skew-symmetric matrix are zero, and therefore its trace equals zero. If is a real skew-symmetric matrix and is a real eigenvalue, then =, i.e. the nonzero eigenvalues of a skew-symmetric matrix are non-real. If is a real skew-symmetric matrix, then + is invertible, where is the identity matrix.

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The matrixvector product becomes a cross product of a ... This is a matrix form of Rodrigues' rotation formula, ... which maps any skew-symmetric matrix A to a ...

  4. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3) , the group of all rotation matrices ...

  5. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    As mentioned above, the Lie algebra R 3 with cross product is isomorphic to the Lie algebra so(3), whose elements can be identified with the 3×3 skew-symmetric matrices. The map a → [a] × provides an isomorphism between R 3 and so(3). Under this map, the cross product of 3-vectors corresponds to the commutator of 3x3 skew-symmetric matrices.

  6. Angular velocity tensor - Wikipedia

    en.wikipedia.org/wiki/Angular_velocity_tensor

    In general, the angular velocity in an n-dimensional space is the time derivative of the angular displacement tensor, which is a second rank skew-symmetric tensor.. This tensor Ω will have n(n−1)/2 independent components, which is the dimension of the Lie algebra of the Lie group of rotations of an n-dimensional inner product space.

  7. Symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Symmetric_matrix

    Any square matrix can uniquely be written as sum of a symmetric and a skew-symmetric matrix. This decomposition is known as the Toeplitz decomposition. Let Mat n {\displaystyle {\mbox{Mat}}_{n}} denote the space of n × n {\displaystyle n\times n} matrices.

  8. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    While a rotation matrix is an orthogonal matrix = representing an element of () (the special orthogonal group), the differential of a rotation is a skew-symmetric matrix = in the tangent space (the special orthogonal Lie algebra), which is not itself a rotation matrix.

  9. Rotations in 4-dimensional Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Rotations_in_4-dimensional...

    into two skew-symmetric matrices A 1 and A 2 satisfying the properties A 1 A 2 = 0, A 1 3 = −A 1 and A 2 3 = −A 2, where ∓θ 1 i and ∓θ 2 i are the eigenvalues of A. Then, the 4D rotation matrices can be obtained from the skew-symmetric matrices A 1 and A 2 by Rodrigues' rotation formula and the Cayley formula. [9] Let A be a 4 × 4 ...